![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > n0ii | GIF version |
Description: If a class has elements, then it is not empty. Inference associated with n0i 3430. (Contributed by BJ, 15-Jul-2021.) |
Ref | Expression |
---|---|
n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
n0ii | ⊢ ¬ 𝐵 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | n0i 3430 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ 𝐵 = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1353 ∈ wcel 2148 ∅c0 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-nul 3425 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |