ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ne0ii Unicode version

Theorem ne0ii 3446
Description: If a class has elements, then it is nonempty. Inference associated with ne0i 3443. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
n0ii.1  |-  A  e.  B
Assertion
Ref Expression
ne0ii  |-  B  =/=  (/)

Proof of Theorem ne0ii
StepHypRef Expression
1 n0ii.1 . 2  |-  A  e.  B
2 ne0i 3443 . 2  |-  ( A  e.  B  ->  B  =/=  (/) )
31, 2ax-mp 5 1  |-  B  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2159    =/= wne 2359   (/)c0 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-v 2753  df-dif 3145  df-nul 3437
This theorem is referenced by:  pw1ne0  7244  sucpw1nel3  7249
  Copyright terms: Public domain W3C validator