ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0i Unicode version

Theorem n0i 3456
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2779. (Contributed by NM, 31-Dec-1993.)
Assertion
Ref Expression
n0i  |-  ( B  e.  A  ->  -.  A  =  (/) )

Proof of Theorem n0i
StepHypRef Expression
1 noel 3454 . . 3  |-  -.  B  e.  (/)
2 eleq2 2260 . . 3  |-  ( A  =  (/)  ->  ( B  e.  A  <->  B  e.  (/) ) )
31, 2mtbiri 676 . 2  |-  ( A  =  (/)  ->  -.  B  e.  A )
43con2i 628 1  |-  ( B  e.  A  ->  -.  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    e. wcel 2167   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by:  ne0i  3457  n0ii  3459  unidif0  4200  iin0r  4202  nnm00  6588  dif1enen  6941  enq0tr  7501  gsum0g  13039  gsumval2  13040
  Copyright terms: Public domain W3C validator