ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0i Unicode version

Theorem n0i 3414
Description: If a set has elements, it is not empty. A set with elements is also inhabited, see elex2 2742. (Contributed by NM, 31-Dec-1993.)
Assertion
Ref Expression
n0i  |-  ( B  e.  A  ->  -.  A  =  (/) )

Proof of Theorem n0i
StepHypRef Expression
1 noel 3413 . . 3  |-  -.  B  e.  (/)
2 eleq2 2230 . . 3  |-  ( A  =  (/)  ->  ( B  e.  A  <->  B  e.  (/) ) )
31, 2mtbiri 665 . 2  |-  ( A  =  (/)  ->  -.  B  e.  A )
43con2i 617 1  |-  ( B  e.  A  ->  -.  A  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    e. wcel 2136   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-nul 3410
This theorem is referenced by:  ne0i  3415  n0ii  3417  unidif0  4146  iin0r  4148  nnm00  6497  dif1enen  6846  enq0tr  7375
  Copyright terms: Public domain W3C validator