ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ne0d Unicode version

Theorem ne0d 3458
Description: Deduction form of ne0i 3457. If a class has elements, then it is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
ne0d.1  |-  ( ph  ->  B  e.  A )
Assertion
Ref Expression
ne0d  |-  ( ph  ->  A  =/=  (/) )

Proof of Theorem ne0d
StepHypRef Expression
1 ne0d.1 . 2  |-  ( ph  ->  B  e.  A )
2 ne0i 3457 . 2  |-  ( B  e.  A  ->  A  =/=  (/) )
31, 2syl 14 1  |-  ( ph  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    =/= wne 2367   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-nul 3451
This theorem is referenced by:  fihashelne0d  10874  mndbn0  13048  grpbn0  13138  bln0  14630
  Copyright terms: Public domain W3C validator