ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0mmoeu Unicode version

Theorem n0mmoeu 3425
Description: A case of equivalence of "at most one" and "only one". If a class is inhabited, that class having at most one element is equivalent to it having only one element. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0mmoeu  |-  ( E. x  x  e.  A  ->  ( E* x  x  e.  A  <->  E! x  x  e.  A )
)
Distinct variable group:    x, A

Proof of Theorem n0mmoeu
StepHypRef Expression
1 exmoeu2 2062 1  |-  ( E. x  x  e.  A  ->  ( E* x  x  e.  A  <->  E! x  x  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wex 1480   E!weu 2014   E*wmo 2015    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator