ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  n0mmoeu Unicode version

Theorem n0mmoeu 3464
Description: A case of equivalence of "at most one" and "only one". If a class is inhabited, that class having at most one element is equivalent to it having only one element. (Contributed by Jim Kingdon, 31-Jul-2018.)
Assertion
Ref Expression
n0mmoeu  |-  ( E. x  x  e.  A  ->  ( E* x  x  e.  A  <->  E! x  x  e.  A )
)
Distinct variable group:    x, A

Proof of Theorem n0mmoeu
StepHypRef Expression
1 exmoeu2 2090 1  |-  ( E. x  x  e.  A  ->  ( E* x  x  e.  A  <->  E! x  x  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1503   E!weu 2042   E*wmo 2043    e. wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator