ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rex0 Unicode version

Theorem rex0 3509
Description: Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
rex0  |-  -.  E. x  e.  (/)  ph

Proof of Theorem rex0
StepHypRef Expression
1 noel 3495 . . 3  |-  -.  x  e.  (/)
21pm2.21i 649 . 2  |-  ( x  e.  (/)  ->  -.  ph )
32nrex 2622 1  |-  -.  E. x  e.  (/)  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2200   E.wrex 2509   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by:  0iun  4022  finexdc  7060  0ct  7270  exfzdc  10441
  Copyright terms: Public domain W3C validator