ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rex0 Unicode version

Theorem rex0 3477
Description: Vacuous existential quantification is false. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
rex0  |-  -.  E. x  e.  (/)  ph

Proof of Theorem rex0
StepHypRef Expression
1 noel 3463 . . 3  |-  -.  x  e.  (/)
21pm2.21i 647 . 2  |-  ( x  e.  (/)  ->  -.  ph )
32nrex 2597 1  |-  -.  E. x  e.  (/)  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2175   E.wrex 2484   (/)c0 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-nul 3460
This theorem is referenced by:  0iun  3984  finexdc  6998  0ct  7208  exfzdc  10367
  Copyright terms: Public domain W3C validator