ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveeq2 Unicode version

Theorem dveeq2 1826
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveeq2  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
Distinct variable group:    x, z

Proof of Theorem dveeq2
StepHypRef Expression
1 ax12or 1519 . . . . 5  |-  ( A. x  x  =  z  \/  ( A. x  x  =  y  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) )
2 orcom 729 . . . . . 6  |-  ( ( A. x  x  =  y  \/  A. x
( z  =  y  ->  A. x  z  =  y ) )  <->  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y ) )
32orbi2i 763 . . . . 5  |-  ( ( A. x  x  =  z  \/  ( A. x  x  =  y  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) )  <->  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y
) ) )
41, 3mpbi 145 . . . 4  |-  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y
) )
5 orass 768 . . . 4  |-  ( ( ( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
)  \/  A. x  x  =  y )  <->  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y ) ) )
64, 5mpbir 146 . . 3  |-  ( ( A. x  x  =  z  \/  A. x
( z  =  y  ->  A. x  z  =  y ) )  \/ 
A. x  x  =  y )
7 orel2 727 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( (
( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
)  \/  A. x  x  =  y )  ->  ( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) ) )
86, 7mpi 15 . 2  |-  ( -. 
A. x  x  =  y  ->  ( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) )
9 ax16 1824 . . 3  |-  ( A. x  x  =  z  ->  ( z  =  y  ->  A. x  z  =  y ) )
10 sp 1522 . . 3  |-  ( A. x ( z  =  y  ->  A. x  z  =  y )  ->  ( z  =  y  ->  A. x  z  =  y ) )
119, 10jaoi 717 . 2  |-  ( ( A. x  x  =  z  \/  A. x
( z  =  y  ->  A. x  z  =  y ) )  -> 
( z  =  y  ->  A. x  z  =  y ) )
128, 11syl 14 1  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  nd5  1829  ax11v2  1831  dveeq1  2035
  Copyright terms: Public domain W3C validator