Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dveeq2 | Unicode version |
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
dveeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12or 1501 | . . . . 5 | |
2 | orcom 723 | . . . . . 6 | |
3 | 2 | orbi2i 757 | . . . . 5 |
4 | 1, 3 | mpbi 144 | . . . 4 |
5 | orass 762 | . . . 4 | |
6 | 4, 5 | mpbir 145 | . . 3 |
7 | orel2 721 | . . 3 | |
8 | 6, 7 | mpi 15 | . 2 |
9 | ax16 1806 | . . 3 | |
10 | sp 1504 | . . 3 | |
11 | 9, 10 | jaoi 711 | . 2 |
12 | 8, 11 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wo 703 wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: nd5 1811 ax11v2 1813 dveeq1 2012 |
Copyright terms: Public domain | W3C validator |