| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dveeq2 | Unicode version | ||
| Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| dveeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12or 1522 |
. . . . 5
| |
| 2 | orcom 729 |
. . . . . 6
| |
| 3 | 2 | orbi2i 763 |
. . . . 5
|
| 4 | 1, 3 | mpbi 145 |
. . . 4
|
| 5 | orass 768 |
. . . 4
| |
| 6 | 4, 5 | mpbir 146 |
. . 3
|
| 7 | orel2 727 |
. . 3
| |
| 8 | 6, 7 | mpi 15 |
. 2
|
| 9 | ax16 1827 |
. . 3
| |
| 10 | sp 1525 |
. . 3
| |
| 11 | 9, 10 | jaoi 717 |
. 2
|
| 12 | 8, 11 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: nd5 1832 ax11v2 1834 dveeq1 2038 |
| Copyright terms: Public domain | W3C validator |