ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveeq2 Unicode version

Theorem dveeq2 1815
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveeq2  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
Distinct variable group:    x, z

Proof of Theorem dveeq2
StepHypRef Expression
1 ax12or 1508 . . . . 5  |-  ( A. x  x  =  z  \/  ( A. x  x  =  y  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) )
2 orcom 728 . . . . . 6  |-  ( ( A. x  x  =  y  \/  A. x
( z  =  y  ->  A. x  z  =  y ) )  <->  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y ) )
32orbi2i 762 . . . . 5  |-  ( ( A. x  x  =  z  \/  ( A. x  x  =  y  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) )  <->  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y
) ) )
41, 3mpbi 145 . . . 4  |-  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y
) )
5 orass 767 . . . 4  |-  ( ( ( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
)  \/  A. x  x  =  y )  <->  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  A. x  z  =  y )  \/  A. x  x  =  y ) ) )
64, 5mpbir 146 . . 3  |-  ( ( A. x  x  =  z  \/  A. x
( z  =  y  ->  A. x  z  =  y ) )  \/ 
A. x  x  =  y )
7 orel2 726 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( (
( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
)  \/  A. x  x  =  y )  ->  ( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) ) )
86, 7mpi 15 . 2  |-  ( -. 
A. x  x  =  y  ->  ( A. x  x  =  z  \/  A. x ( z  =  y  ->  A. x  z  =  y )
) )
9 ax16 1813 . . 3  |-  ( A. x  x  =  z  ->  ( z  =  y  ->  A. x  z  =  y ) )
10 sp 1511 . . 3  |-  ( A. x ( z  =  y  ->  A. x  z  =  y )  ->  ( z  =  y  ->  A. x  z  =  y ) )
119, 10jaoi 716 . 2  |-  ( ( A. x  x  =  z  \/  A. x
( z  =  y  ->  A. x  z  =  y ) )  -> 
( z  =  y  ->  A. x  z  =  y ) )
128, 11syl 14 1  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 708   A.wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  nd5  1818  ax11v2  1820  dveeq1  2019
  Copyright terms: Public domain W3C validator