ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnemnf Unicode version

Theorem pnfnemnf 8129
Description: Plus and minus infinity are different elements of  RR*. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
pnfnemnf  |- +oo  =/= -oo

Proof of Theorem pnfnemnf
StepHypRef Expression
1 pnfxr 8127 . . . 4  |- +oo  e.  RR*
2 pwne 4205 . . . 4  |-  ( +oo  e.  RR*  ->  ~P +oo  =/= +oo )
31, 2ax-mp 5 . . 3  |-  ~P +oo  =/= +oo
43necomi 2461 . 2  |- +oo  =/=  ~P +oo
5 df-mnf 8112 . 2  |- -oo  =  ~P +oo
64, 5neeqtrri 2405 1  |- +oo  =/= -oo
Colors of variables: wff set class
Syntax hints:    e. wcel 2176    =/= wne 2376   ~Pcpw 3616   +oocpnf 8106   -oocmnf 8107   RR*cxr 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-un 4481  ax-cnex 8018
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-pnf 8111  df-mnf 8112  df-xr 8113
This theorem is referenced by:  mnfnepnf  8130  xnn0nemnf  9371  xrnemnf  9901  xrltnr  9903  pnfnlt  9911  nltmnf  9912  ngtmnft  9941  xrmnfdc  9967  xaddpnf1  9970  xaddnemnf  9981  xposdif  10006  xleaddadd  10011
  Copyright terms: Public domain W3C validator