ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnemnf Unicode version

Theorem pnfnemnf 8162
Description: Plus and minus infinity are different elements of  RR*. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
pnfnemnf  |- +oo  =/= -oo

Proof of Theorem pnfnemnf
StepHypRef Expression
1 pnfxr 8160 . . . 4  |- +oo  e.  RR*
2 pwne 4220 . . . 4  |-  ( +oo  e.  RR*  ->  ~P +oo  =/= +oo )
31, 2ax-mp 5 . . 3  |-  ~P +oo  =/= +oo
43necomi 2463 . 2  |- +oo  =/=  ~P +oo
5 df-mnf 8145 . 2  |- -oo  =  ~P +oo
64, 5neeqtrri 2407 1  |- +oo  =/= -oo
Colors of variables: wff set class
Syntax hints:    e. wcel 2178    =/= wne 2378   ~Pcpw 3626   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-un 4498  ax-cnex 8051
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-pnf 8144  df-mnf 8145  df-xr 8146
This theorem is referenced by:  mnfnepnf  8163  xnn0nemnf  9404  xrnemnf  9934  xrltnr  9936  pnfnlt  9944  nltmnf  9945  ngtmnft  9974  xrmnfdc  10000  xaddpnf1  10003  xaddnemnf  10014  xposdif  10039  xleaddadd  10044
  Copyright terms: Public domain W3C validator