ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnemnf Unicode version

Theorem pnfnemnf 8201
Description: Plus and minus infinity are different elements of  RR*. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
pnfnemnf  |- +oo  =/= -oo

Proof of Theorem pnfnemnf
StepHypRef Expression
1 pnfxr 8199 . . . 4  |- +oo  e.  RR*
2 pwne 4244 . . . 4  |-  ( +oo  e.  RR*  ->  ~P +oo  =/= +oo )
31, 2ax-mp 5 . . 3  |-  ~P +oo  =/= +oo
43necomi 2485 . 2  |- +oo  =/=  ~P +oo
5 df-mnf 8184 . 2  |- -oo  =  ~P +oo
64, 5neeqtrri 2429 1  |- +oo  =/= -oo
Colors of variables: wff set class
Syntax hints:    e. wcel 2200    =/= wne 2400   ~Pcpw 3649   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-un 4524  ax-cnex 8090
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-pnf 8183  df-mnf 8184  df-xr 8185
This theorem is referenced by:  mnfnepnf  8202  xnn0nemnf  9443  xrnemnf  9973  xrltnr  9975  pnfnlt  9983  nltmnf  9984  ngtmnft  10013  xrmnfdc  10039  xaddpnf1  10042  xaddnemnf  10053  xposdif  10078  xleaddadd  10083
  Copyright terms: Public domain W3C validator