ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnemnf Unicode version

Theorem pnfnemnf 8076
Description: Plus and minus infinity are different elements of  RR*. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
pnfnemnf  |- +oo  =/= -oo

Proof of Theorem pnfnemnf
StepHypRef Expression
1 pnfxr 8074 . . . 4  |- +oo  e.  RR*
2 pwne 4190 . . . 4  |-  ( +oo  e.  RR*  ->  ~P +oo  =/= +oo )
31, 2ax-mp 5 . . 3  |-  ~P +oo  =/= +oo
43necomi 2449 . 2  |- +oo  =/=  ~P +oo
5 df-mnf 8059 . 2  |- -oo  =  ~P +oo
64, 5neeqtrri 2393 1  |- +oo  =/= -oo
Colors of variables: wff set class
Syntax hints:    e. wcel 2164    =/= wne 2364   ~Pcpw 3602   +oocpnf 8053   -oocmnf 8054   RR*cxr 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-un 4465  ax-cnex 7965
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-pnf 8058  df-mnf 8059  df-xr 8060
This theorem is referenced by:  mnfnepnf  8077  xnn0nemnf  9317  xrnemnf  9846  xrltnr  9848  pnfnlt  9856  nltmnf  9857  ngtmnft  9886  xrmnfdc  9912  xaddpnf1  9915  xaddnemnf  9926  xposdif  9951  xleaddadd  9956
  Copyright terms: Public domain W3C validator