| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ruALT | Unicode version | ||
| Description: Alternate proof of Russell's Paradox ru 3004, simplified using (indirectly) the Axiom of Set Induction ax-setind 4603. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ruALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4192 |
. . 3
| |
| 2 | df-nel 2474 |
. . 3
| |
| 3 | 1, 2 | mpbir 146 |
. 2
|
| 4 | ruv 4616 |
. . 3
| |
| 5 | neleq1 2477 |
. . 3
| |
| 6 | 4, 5 | ax-mp 5 |
. 2
|
| 7 | 3, 6 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-v 2778 df-dif 3176 df-sn 3649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |