| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ruALT | Unicode version | ||
| Description: Alternate proof of Russell's Paradox ru 2988, simplified using (indirectly) the Axiom of Set Induction ax-setind 4573. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| ruALT | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vprc 4165 | 
. . 3
 | |
| 2 | df-nel 2463 | 
. . 3
 | |
| 3 | 1, 2 | mpbir 146 | 
. 2
 | 
| 4 | ruv 4586 | 
. . 3
 | |
| 5 | neleq1 2466 | 
. . 3
 | |
| 6 | 4, 5 | ax-mp 5 | 
. 2
 | 
| 7 | 3, 6 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-v 2765 df-dif 3159 df-sn 3628 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |