ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruALT Unicode version

Theorem ruALT 4617
Description: Alternate proof of Russell's Paradox ru 3004, simplified using (indirectly) the Axiom of Set Induction ax-setind 4603. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT  |-  { x  |  x  e/  x }  e/  _V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 4192 . . 3  |-  -.  _V  e.  _V
2 df-nel 2474 . . 3  |-  ( _V 
e/  _V  <->  -.  _V  e.  _V )
31, 2mpbir 146 . 2  |-  _V  e/  _V
4 ruv 4616 . . 3  |-  { x  |  x  e/  x }  =  _V
5 neleq1 2477 . . 3  |-  ( { x  |  x  e/  x }  =  _V  ->  ( { x  |  x  e/  x }  e/  _V  <->  _V  e/  _V )
)
64, 5ax-mp 5 . 2  |-  ( { x  |  x  e/  x }  e/  _V  <->  _V  e/  _V )
73, 6mpbir 146 1  |-  { x  |  x  e/  x }  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193    e/ wnel 2473   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-v 2778  df-dif 3176  df-sn 3649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator