ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruALT Unicode version

Theorem ruALT 4565
Description: Alternate proof of Russell's Paradox ru 2976, simplified using (indirectly) the Axiom of Set Induction ax-setind 4551. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT  |-  { x  |  x  e/  x }  e/  _V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 4150 . . 3  |-  -.  _V  e.  _V
2 df-nel 2456 . . 3  |-  ( _V 
e/  _V  <->  -.  _V  e.  _V )
31, 2mpbir 146 . 2  |-  _V  e/  _V
4 ruv 4564 . . 3  |-  { x  |  x  e/  x }  =  _V
5 neleq1 2459 . . 3  |-  ( { x  |  x  e/  x }  =  _V  ->  ( { x  |  x  e/  x }  e/  _V  <->  _V  e/  _V )
)
64, 5ax-mp 5 . 2  |-  ( { x  |  x  e/  x }  e/  _V  <->  _V  e/  _V )
73, 6mpbir 146 1  |-  { x  |  x  e/  x }  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175    e/ wnel 2455   _Vcvv 2752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-v 2754  df-dif 3146  df-sn 3613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator