ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruALT Unicode version

Theorem ruALT 4599
Description: Alternate proof of Russell's Paradox ru 2997, simplified using (indirectly) the Axiom of Set Induction ax-setind 4585. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT  |-  { x  |  x  e/  x }  e/  _V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 4176 . . 3  |-  -.  _V  e.  _V
2 df-nel 2472 . . 3  |-  ( _V 
e/  _V  <->  -.  _V  e.  _V )
31, 2mpbir 146 . 2  |-  _V  e/  _V
4 ruv 4598 . . 3  |-  { x  |  x  e/  x }  =  _V
5 neleq1 2475 . . 3  |-  ( { x  |  x  e/  x }  =  _V  ->  ( { x  |  x  e/  x }  e/  _V  <->  _V  e/  _V )
)
64, 5ax-mp 5 . 2  |-  ( { x  |  x  e/  x }  e/  _V  <->  _V  e/  _V )
73, 6mpbir 146 1  |-  { x  |  x  e/  x }  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191    e/ wnel 2471   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-v 2774  df-dif 3168  df-sn 3639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator