ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ruALT Unicode version

Theorem ruALT 4643
Description: Alternate proof of Russell's Paradox ru 3027, simplified using (indirectly) the Axiom of Set Induction ax-setind 4629. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT  |-  { x  |  x  e/  x }  e/  _V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 4216 . . 3  |-  -.  _V  e.  _V
2 df-nel 2496 . . 3  |-  ( _V 
e/  _V  <->  -.  _V  e.  _V )
31, 2mpbir 146 . 2  |-  _V  e/  _V
4 ruv 4642 . . 3  |-  { x  |  x  e/  x }  =  _V
5 neleq1 2499 . . 3  |-  ( { x  |  x  e/  x }  =  _V  ->  ( { x  |  x  e/  x }  e/  _V  <->  _V  e/  _V )
)
64, 5ax-mp 5 . 2  |-  ( { x  |  x  e/  x }  e/  _V  <->  _V  e/  _V )
73, 6mpbir 146 1  |-  { x  |  x  e/  x }  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215    e/ wnel 2495   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-v 2801  df-dif 3199  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator