ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnb Unicode version

Theorem difsnb 3732
Description:  ( B  \  { A } ) equals  B if and only if  A is not a member of  B. Generalization of difsn 3726. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb  |-  ( -.  A  e.  B  <->  ( B  \  { A } )  =  B )

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 3726 . 2  |-  ( -.  A  e.  B  -> 
( B  \  { A } )  =  B )
2 neldifsnd 3720 . . . . 5  |-  ( A  e.  B  ->  -.  A  e.  ( B  \  { A } ) )
3 nelne1 2435 . . . . 5  |-  ( ( A  e.  B  /\  -.  A  e.  ( B  \  { A }
) )  ->  B  =/=  ( B  \  { A } ) )
42, 3mpdan 421 . . . 4  |-  ( A  e.  B  ->  B  =/=  ( B  \  { A } ) )
54necomd 2431 . . 3  |-  ( A  e.  B  ->  ( B  \  { A }
)  =/=  B )
65necon2bi 2400 . 2  |-  ( ( B  \  { A } )  =  B  ->  -.  A  e.  B )
71, 6impbii 126 1  |-  ( -.  A  e.  B  <->  ( B  \  { A } )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    = wceq 1353    e. wcel 2146    =/= wne 2345    \ cdif 3124   {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-v 2737  df-dif 3129  df-sn 3595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator