ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnb Unicode version

Theorem difsnb 3716
Description:  ( B  \  { A } ) equals  B if and only if  A is not a member of  B. Generalization of difsn 3710. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb  |-  ( -.  A  e.  B  <->  ( B  \  { A } )  =  B )

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 3710 . 2  |-  ( -.  A  e.  B  -> 
( B  \  { A } )  =  B )
2 neldifsnd 3707 . . . . 5  |-  ( A  e.  B  ->  -.  A  e.  ( B  \  { A } ) )
3 nelne1 2426 . . . . 5  |-  ( ( A  e.  B  /\  -.  A  e.  ( B  \  { A }
) )  ->  B  =/=  ( B  \  { A } ) )
42, 3mpdan 418 . . . 4  |-  ( A  e.  B  ->  B  =/=  ( B  \  { A } ) )
54necomd 2422 . . 3  |-  ( A  e.  B  ->  ( B  \  { A }
)  =/=  B )
65necon2bi 2391 . 2  |-  ( ( B  \  { A } )  =  B  ->  -.  A  e.  B )
71, 6impbii 125 1  |-  ( -.  A  e.  B  <->  ( B  \  { A } )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    = wceq 1343    e. wcel 2136    =/= wne 2336    \ cdif 3113   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator