ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnb Unicode version

Theorem difsnb 3749
Description:  ( B  \  { A } ) equals  B if and only if  A is not a member of  B. Generalization of difsn 3743. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb  |-  ( -.  A  e.  B  <->  ( B  \  { A } )  =  B )

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 3743 . 2  |-  ( -.  A  e.  B  -> 
( B  \  { A } )  =  B )
2 neldifsnd 3737 . . . . 5  |-  ( A  e.  B  ->  -.  A  e.  ( B  \  { A } ) )
3 nelne1 2449 . . . . 5  |-  ( ( A  e.  B  /\  -.  A  e.  ( B  \  { A }
) )  ->  B  =/=  ( B  \  { A } ) )
42, 3mpdan 421 . . . 4  |-  ( A  e.  B  ->  B  =/=  ( B  \  { A } ) )
54necomd 2445 . . 3  |-  ( A  e.  B  ->  ( B  \  { A }
)  =/=  B )
65necon2bi 2414 . 2  |-  ( ( B  \  { A } )  =  B  ->  -.  A  e.  B )
71, 6impbii 126 1  |-  ( -.  A  e.  B  <->  ( B  \  { A } )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    = wceq 1363    e. wcel 2159    =/= wne 2359    \ cdif 3140   {csn 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-v 2753  df-dif 3145  df-sn 3612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator