ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnb Unicode version

Theorem difsnb 3723
Description:  ( B  \  { A } ) equals  B if and only if  A is not a member of  B. Generalization of difsn 3717. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb  |-  ( -.  A  e.  B  <->  ( B  \  { A } )  =  B )

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 3717 . 2  |-  ( -.  A  e.  B  -> 
( B  \  { A } )  =  B )
2 neldifsnd 3714 . . . . 5  |-  ( A  e.  B  ->  -.  A  e.  ( B  \  { A } ) )
3 nelne1 2430 . . . . 5  |-  ( ( A  e.  B  /\  -.  A  e.  ( B  \  { A }
) )  ->  B  =/=  ( B  \  { A } ) )
42, 3mpdan 419 . . . 4  |-  ( A  e.  B  ->  B  =/=  ( B  \  { A } ) )
54necomd 2426 . . 3  |-  ( A  e.  B  ->  ( B  \  { A }
)  =/=  B )
65necon2bi 2395 . 2  |-  ( ( B  \  { A } )  =  B  ->  -.  A  e.  B )
71, 6impbii 125 1  |-  ( -.  A  e.  B  <->  ( B  \  { A } )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340    \ cdif 3118   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-sn 3589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator