ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelne1 GIF version

Theorem nelne1 2457
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.)
Assertion
Ref Expression
nelne1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)

Proof of Theorem nelne1
StepHypRef Expression
1 eleq2 2260 . . . 4 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
21biimpcd 159 . . 3 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
32necon3bd 2410 . 2 (𝐴𝐵 → (¬ 𝐴𝐶𝐵𝐶))
43imp 124 1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192  df-ne 2368
This theorem is referenced by:  elnelne1  2471  difsnb  3765
  Copyright terms: Public domain W3C validator