ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelne1 GIF version

Theorem nelne1 2490
Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012.)
Assertion
Ref Expression
nelne1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)

Proof of Theorem nelne1
StepHypRef Expression
1 eleq2 2293 . . . 4 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
21biimpcd 159 . . 3 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
32necon3bd 2443 . 2 (𝐴𝐵 → (¬ 𝐴𝐶𝐵𝐶))
43imp 124 1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-ne 2401
This theorem is referenced by:  elnelne1  2504  difsnb  3811
  Copyright terms: Public domain W3C validator