ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bd Unicode version

Theorem necon3bd 2388
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3bd.1  |-  ( ph  ->  ( A  =  B  ->  ps ) )
Assertion
Ref Expression
necon3bd  |-  ( ph  ->  ( -.  ps  ->  A  =/=  B ) )

Proof of Theorem necon3bd
StepHypRef Expression
1 necon3bd.1 . . 3  |-  ( ph  ->  ( A  =  B  ->  ps ) )
21con3d 631 . 2  |-  ( ph  ->  ( -.  ps  ->  -.  A  =  B ) )
3 df-ne 2346 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
42, 3syl6ibr 162 1  |-  ( ph  ->  ( -.  ps  ->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353    =/= wne 2345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2346
This theorem is referenced by:  nelne1  2435  nelne2  2436  nssne1  3211  nssne2  3212  disjne  3474  difsn  3726  nbrne1  4017  nbrne2  4018  ac6sfi  6888  indpi  7316  zneo  9325  pc2dvds  12294  pcadd  12304  oddprmdvds  12317  lgsne0  13990
  Copyright terms: Public domain W3C validator