Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3bd | Unicode version |
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
Ref | Expression |
---|---|
necon3bd.1 |
Ref | Expression |
---|---|
necon3bd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bd.1 | . . 3 | |
2 | 1 | con3d 631 | . 2 |
3 | df-ne 2346 | . 2 | |
4 | 2, 3 | syl6ibr 162 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1353 wne 2345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 df-ne 2346 |
This theorem is referenced by: nelne1 2435 nelne2 2436 nssne1 3211 nssne2 3212 disjne 3474 difsn 3726 nbrne1 4017 nbrne2 4018 ac6sfi 6888 indpi 7316 zneo 9325 pc2dvds 12294 pcadd 12304 oddprmdvds 12317 lgsne0 13990 |
Copyright terms: Public domain | W3C validator |