ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bd Unicode version

Theorem necon3bd 2443
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3bd.1  |-  ( ph  ->  ( A  =  B  ->  ps ) )
Assertion
Ref Expression
necon3bd  |-  ( ph  ->  ( -.  ps  ->  A  =/=  B ) )

Proof of Theorem necon3bd
StepHypRef Expression
1 necon3bd.1 . . 3  |-  ( ph  ->  ( A  =  B  ->  ps ) )
21con3d 634 . 2  |-  ( ph  ->  ( -.  ps  ->  -.  A  =  B ) )
3 df-ne 2401 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
42, 3imbitrrdi 162 1  |-  ( ph  ->  ( -.  ps  ->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    =/= wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117  df-ne 2401
This theorem is referenced by:  nelne1  2490  nelne2  2491  nssne1  3282  nssne2  3283  disjne  3545  difsn  3805  nbrne1  4102  nbrne2  4103  ac6sfi  7060  indpi  7529  zneo  9548  pc2dvds  12853  pcadd  12863  oddprmdvds  12877  4sqlem11  12924  isnzr2  14148  lssvneln0  14337  lgsne0  15717  lgsquadlem2  15757  lgsquadlem3  15758
  Copyright terms: Public domain W3C validator