ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bd Unicode version

Theorem necon3bd 2383
Description: Contrapositive law deduction for inequality. (Contributed by NM, 2-Apr-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3bd.1  |-  ( ph  ->  ( A  =  B  ->  ps ) )
Assertion
Ref Expression
necon3bd  |-  ( ph  ->  ( -.  ps  ->  A  =/=  B ) )

Proof of Theorem necon3bd
StepHypRef Expression
1 necon3bd.1 . . 3  |-  ( ph  ->  ( A  =  B  ->  ps ) )
21con3d 626 . 2  |-  ( ph  ->  ( -.  ps  ->  -.  A  =  B ) )
3 df-ne 2341 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
42, 3syl6ibr 161 1  |-  ( ph  ->  ( -.  ps  ->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-ne 2341
This theorem is referenced by:  nelne1  2430  nelne2  2431  nssne1  3205  nssne2  3206  disjne  3468  difsn  3717  nbrne1  4008  nbrne2  4009  ac6sfi  6876  indpi  7304  zneo  9313  pc2dvds  12283  pcadd  12293  oddprmdvds  12306  lgsne0  13733
  Copyright terms: Public domain W3C validator