ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nemtbir Unicode version

Theorem nemtbir 2453
Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.)
Hypotheses
Ref Expression
nemtbir.1  |-  A  =/= 
B
nemtbir.2  |-  ( ph  <->  A  =  B )
Assertion
Ref Expression
nemtbir  |-  -.  ph

Proof of Theorem nemtbir
StepHypRef Expression
1 nemtbir.1 . . 3  |-  A  =/= 
B
2 df-ne 2365 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
31, 2mpbi 145 . 2  |-  -.  A  =  B
4 nemtbir.2 . 2  |-  ( ph  <->  A  =  B )
53, 4mtbir 672 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    = wceq 1364    =/= wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2365
This theorem is referenced by:  opthprc  4706  php5  6905  snnen2oprc  6907  djulclb  7104  ismkvnex  7204  sucpw1nel3  7283  m1exp1  12029  pwle2  15427
  Copyright terms: Public domain W3C validator