ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelss Unicode version

Theorem nelss 3285
Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
nelss  |-  ( ( A  e.  B  /\  -.  A  e.  C
)  ->  -.  B  C_  C )

Proof of Theorem nelss
StepHypRef Expression
1 ssel 3218 . . 3  |-  ( B 
C_  C  ->  ( A  e.  B  ->  A  e.  C ) )
21com12 30 . 2  |-  ( A  e.  B  ->  ( B  C_  C  ->  A  e.  C ) )
32con3dimp 638 1  |-  ( ( A  e.  B  /\  -.  A  e.  C
)  ->  -.  B  C_  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2200    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator