ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelss Unicode version

Theorem nelss 3254
Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
nelss  |-  ( ( A  e.  B  /\  -.  A  e.  C
)  ->  -.  B  C_  C )

Proof of Theorem nelss
StepHypRef Expression
1 ssel 3187 . . 3  |-  ( B 
C_  C  ->  ( A  e.  B  ->  A  e.  C ) )
21com12 30 . 2  |-  ( A  e.  B  ->  ( B  C_  C  ->  A  e.  C ) )
32con3dimp 636 1  |-  ( ( A  e.  B  /\  -.  A  e.  C
)  ->  -.  B  C_  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2176    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator