ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexf Unicode version

Theorem ssrexf 3245
Description: Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
ssrexf.1  |-  F/_ x A
ssrexf.2  |-  F/_ x B
Assertion
Ref Expression
ssrexf  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )

Proof of Theorem ssrexf
StepHypRef Expression
1 ssrexf.1 . . . 4  |-  F/_ x A
2 ssrexf.2 . . . 4  |-  F/_ x B
31, 2nfss 3176 . . 3  |-  F/ x  A  C_  B
4 ssel 3177 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
54anim1d 336 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  ->  (
x  e.  B  /\  ph ) ) )
63, 5eximd 1626 . 2  |-  ( A 
C_  B  ->  ( E. x ( x  e.  A  /\  ph )  ->  E. x ( x  e.  B  /\  ph ) ) )
7 df-rex 2481 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
8 df-rex 2481 . 2  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
96, 7, 83imtr4g 205 1  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1506    e. wcel 2167   F/_wnfc 2326   E.wrex 2476    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator