ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrexf Unicode version

Theorem ssrexf 3256
Description: Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
ssrexf.1  |-  F/_ x A
ssrexf.2  |-  F/_ x B
Assertion
Ref Expression
ssrexf  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )

Proof of Theorem ssrexf
StepHypRef Expression
1 ssrexf.1 . . . 4  |-  F/_ x A
2 ssrexf.2 . . . 4  |-  F/_ x B
31, 2nfss 3187 . . 3  |-  F/ x  A  C_  B
4 ssel 3188 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
54anim1d 336 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  ->  (
x  e.  B  /\  ph ) ) )
63, 5eximd 1636 . 2  |-  ( A 
C_  B  ->  ( E. x ( x  e.  A  /\  ph )  ->  E. x ( x  e.  B  /\  ph ) ) )
7 df-rex 2491 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
8 df-rex 2491 . 2  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
96, 7, 83imtr4g 205 1  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1516    e. wcel 2177   F/_wnfc 2336   E.wrex 2486    C_ wss 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-in 3173  df-ss 3180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator