| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3172 |
. . . . . 6
| |
| 2 | 1 | biimpi 120 |
. . . . 5
|
| 3 | 2 | 19.21bi 1572 |
. . . 4
|
| 4 | 3 | anim2d 337 |
. . 3
|
| 5 | 4 | eximdv 1894 |
. 2
|
| 6 | df-clel 2192 |
. 2
| |
| 7 | df-clel 2192 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssel2 3179 sseli 3180 sseld 3183 sstr2 3191 nelss 3245 ssrexf 3246 ssralv 3248 ssrexv 3249 ralss 3250 rexss 3251 ssconb 3297 sscon 3298 ssdif 3299 unss1 3333 ssrin 3389 difin2 3426 reuss2 3444 reupick 3448 sssnm 3785 uniss 3861 ss2iun 3932 ssiun 3959 iinss 3969 disjss2 4014 disjss1 4017 pwnss 4193 sspwb 4250 ssopab2b 4312 soss 4350 sucssel 4460 ssorduni 4524 onintonm 4554 onnmin 4605 ssnel 4606 wessep 4615 ssrel 4752 ssrel2 4754 ssrelrel 4764 xpss12 4771 cnvss 4840 dmss 4866 elreldm 4893 dmcosseq 4938 relssres 4985 iss 4993 resopab2 4994 issref 5053 ssrnres 5113 dfco2a 5171 cores 5174 funssres 5301 fununi 5327 funimaexglem 5342 dfimafn 5612 funimass4 5614 funimass3 5681 dff4im 5711 funfvima2 5798 funfvima3 5799 f1elima 5823 riotass2 5907 ssoprab2b 5983 resoprab2 6023 releldm2 6252 reldmtpos 6320 dmtpos 6323 rdgss 6450 ss2ixp 6779 fiintim 7001 negf1o 8425 lbreu 8989 lbinf 8992 eqreznegel 9705 negm 9706 iccsupr 10058 negfi 11410 sumrbdclem 11559 prodrbdclem 11753 fprodmodd 11823 mulgpropdg 13370 subgintm 13404 subrngintm 13844 subrgintm 13875 islssm 13989 lspsnel6 14040 islidlm 14111 metrest 14826 bdop 15605 bj-nnen2lp 15684 exmidsbthrlem 15753 |
| Copyright terms: Public domain | W3C validator |