| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3181 |
. . . . . 6
| |
| 2 | 1 | biimpi 120 |
. . . . 5
|
| 3 | 2 | 19.21bi 1581 |
. . . 4
|
| 4 | 3 | anim2d 337 |
. . 3
|
| 5 | 4 | eximdv 1903 |
. 2
|
| 6 | df-clel 2201 |
. 2
| |
| 7 | df-clel 2201 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssel2 3188 sseli 3189 sseld 3192 sstr2 3200 nelss 3254 ssrexf 3255 ssralv 3257 ssrexv 3258 ralss 3259 rexss 3260 ssconb 3306 sscon 3307 ssdif 3308 unss1 3342 ssrin 3398 difin2 3435 reuss2 3453 reupick 3457 sssnm 3795 uniss 3871 ss2iun 3942 ssiun 3969 iinss 3979 disjss2 4024 disjss1 4027 pwnss 4203 sspwb 4260 ssopab2b 4323 soss 4361 sucssel 4471 ssorduni 4535 onintonm 4565 onnmin 4616 ssnel 4617 wessep 4626 ssrel 4763 ssrel2 4765 ssrelrel 4775 xpss12 4782 cnvss 4851 dmss 4877 elreldm 4904 dmcosseq 4950 relssres 4997 iss 5005 resopab2 5006 issref 5065 ssrnres 5125 dfco2a 5183 cores 5186 funssres 5313 fununi 5342 funimaexglem 5357 dfimafn 5627 funimass4 5629 funimass3 5696 dff4im 5726 funfvima2 5817 funfvima3 5818 f1elima 5842 riotass2 5926 ssoprab2b 6002 resoprab2 6042 releldm2 6271 reldmtpos 6339 dmtpos 6342 rdgss 6469 ss2ixp 6798 fiintim 7028 negf1o 8454 lbreu 9018 lbinf 9021 eqreznegel 9735 negm 9736 iccsupr 10088 negfi 11539 sumrbdclem 11688 prodrbdclem 11882 fprodmodd 11952 mulgpropdg 13500 subgintm 13534 subrngintm 13974 subrgintm 14005 islssm 14119 lspsnel6 14170 islidlm 14241 metrest 14978 bdop 15815 bj-nnen2lp 15894 exmidsbthrlem 15965 |
| Copyright terms: Public domain | W3C validator |