| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3189 |
. . . . . 6
| |
| 2 | 1 | biimpi 120 |
. . . . 5
|
| 3 | 2 | 19.21bi 1582 |
. . . 4
|
| 4 | 3 | anim2d 337 |
. . 3
|
| 5 | 4 | eximdv 1904 |
. 2
|
| 6 | df-clel 2203 |
. 2
| |
| 7 | df-clel 2203 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssel2 3196 sseli 3197 sseld 3200 sstr2 3208 nelss 3262 ssrexf 3263 ssralv 3265 ssrexv 3266 ralss 3267 rexss 3268 ssconb 3314 sscon 3315 ssdif 3316 unss1 3350 ssrin 3406 difin2 3443 reuss2 3461 reupick 3465 sssnm 3808 uniss 3885 ss2iun 3956 ssiun 3983 iinss 3993 disjss2 4038 disjss1 4041 pwnss 4219 sspwb 4278 ssopab2b 4341 soss 4379 sucssel 4489 ssorduni 4553 onintonm 4583 onnmin 4634 ssnel 4635 wessep 4644 ssrel 4781 ssrel2 4783 ssrelrel 4793 xpss12 4800 cnvss 4869 dmss 4896 elreldm 4923 dmcosseq 4969 relssres 5016 iss 5024 resopab2 5025 issref 5084 ssrnres 5144 dfco2a 5202 cores 5205 funssres 5332 fununi 5361 funimaexglem 5376 dfimafn 5650 funimass4 5652 funimass3 5719 dff4im 5749 funfvima2 5840 funfvima3 5841 f1elima 5865 riotass2 5949 ssoprab2b 6025 resoprab2 6065 releldm2 6294 reldmtpos 6362 dmtpos 6365 rdgss 6492 ss2ixp 6821 1ndom2 6987 fiintim 7054 negf1o 8489 lbreu 9053 lbinf 9056 eqreznegel 9770 negm 9771 iccsupr 10123 negfi 11654 sumrbdclem 11803 prodrbdclem 11997 fprodmodd 12067 mulgpropdg 13615 subgintm 13649 subrngintm 14089 subrgintm 14120 islssm 14234 lspsnel6 14285 islidlm 14356 metrest 15093 bdop 16010 bj-nnen2lp 16089 exmidsbthrlem 16163 |
| Copyright terms: Public domain | W3C validator |