ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel Unicode version

Theorem ssel 3187
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssel  |-  ( A 
C_  B  ->  ( C  e.  A  ->  C  e.  B ) )

Proof of Theorem ssel
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssalel 3181 . . . . . 6  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
21biimpi 120 . . . . 5  |-  ( A 
C_  B  ->  A. x
( x  e.  A  ->  x  e.  B ) )
3219.21bi 1581 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
43anim2d 337 . . 3  |-  ( A 
C_  B  ->  (
( x  =  C  /\  x  e.  A
)  ->  ( x  =  C  /\  x  e.  B ) ) )
54eximdv 1903 . 2  |-  ( A 
C_  B  ->  ( E. x ( x  =  C  /\  x  e.  A )  ->  E. x
( x  =  C  /\  x  e.  B
) ) )
6 df-clel 2201 . 2  |-  ( C  e.  A  <->  E. x
( x  =  C  /\  x  e.  A
) )
7 df-clel 2201 . 2  |-  ( C  e.  B  <->  E. x
( x  =  C  /\  x  e.  B
) )
85, 6, 73imtr4g 205 1  |-  ( A 
C_  B  ->  ( C  e.  A  ->  C  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  ssel2  3188  sseli  3189  sseld  3192  sstr2  3200  nelss  3254  ssrexf  3255  ssralv  3257  ssrexv  3258  ralss  3259  rexss  3260  ssconb  3306  sscon  3307  ssdif  3308  unss1  3342  ssrin  3398  difin2  3435  reuss2  3453  reupick  3457  sssnm  3795  uniss  3871  ss2iun  3942  ssiun  3969  iinss  3979  disjss2  4024  disjss1  4027  pwnss  4203  sspwb  4260  ssopab2b  4323  soss  4361  sucssel  4471  ssorduni  4535  onintonm  4565  onnmin  4616  ssnel  4617  wessep  4626  ssrel  4763  ssrel2  4765  ssrelrel  4775  xpss12  4782  cnvss  4851  dmss  4877  elreldm  4904  dmcosseq  4950  relssres  4997  iss  5005  resopab2  5006  issref  5065  ssrnres  5125  dfco2a  5183  cores  5186  funssres  5313  fununi  5342  funimaexglem  5357  dfimafn  5627  funimass4  5629  funimass3  5696  dff4im  5726  funfvima2  5817  funfvima3  5818  f1elima  5842  riotass2  5926  ssoprab2b  6002  resoprab2  6042  releldm2  6271  reldmtpos  6339  dmtpos  6342  rdgss  6469  ss2ixp  6798  fiintim  7028  negf1o  8454  lbreu  9018  lbinf  9021  eqreznegel  9735  negm  9736  iccsupr  10088  negfi  11539  sumrbdclem  11688  prodrbdclem  11882  fprodmodd  11952  mulgpropdg  13500  subgintm  13534  subrngintm  13974  subrgintm  14005  islssm  14119  lspsnel6  14170  islidlm  14241  metrest  14978  bdop  15815  bj-nnen2lp  15894  exmidsbthrlem  15965
  Copyright terms: Public domain W3C validator