Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssel | Unicode version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3142 | . . . . . 6 | |
2 | 1 | biimpi 120 | . . . . 5 |
3 | 2 | 19.21bi 1556 | . . . 4 |
4 | 3 | anim2d 337 | . . 3 |
5 | 4 | eximdv 1878 | . 2 |
6 | df-clel 2171 | . 2 | |
7 | df-clel 2171 | . 2 | |
8 | 5, 6, 7 | 3imtr4g 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wal 1351 wceq 1353 wex 1490 wcel 2146 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: ssel2 3148 sseli 3149 sseld 3152 sstr2 3160 nelss 3214 ssrexf 3215 ssralv 3217 ssrexv 3218 ralss 3219 rexss 3220 ssconb 3266 sscon 3267 ssdif 3268 unss1 3302 ssrin 3358 difin2 3395 reuss2 3413 reupick 3417 sssnm 3750 uniss 3826 ss2iun 3897 ssiun 3924 iinss 3933 disjss2 3978 disjss1 3981 pwnss 4154 sspwb 4210 ssopab2b 4270 soss 4308 sucssel 4418 ssorduni 4480 onintonm 4510 onnmin 4561 ssnel 4562 wessep 4571 ssrel 4708 ssrel2 4710 ssrelrel 4720 xpss12 4727 cnvss 4793 dmss 4819 elreldm 4846 dmcosseq 4891 relssres 4938 iss 4946 resopab2 4947 issref 5003 ssrnres 5063 dfco2a 5121 cores 5124 funssres 5250 fununi 5276 funimaexglem 5291 dfimafn 5556 funimass4 5558 funimass3 5624 dff4im 5654 funfvima2 5740 funfvima3 5741 f1elima 5764 riotass2 5847 ssoprab2b 5922 resoprab2 5962 releldm2 6176 reldmtpos 6244 dmtpos 6247 rdgss 6374 ss2ixp 6701 fiintim 6918 negf1o 8313 lbreu 8873 lbinf 8876 eqreznegel 9585 negm 9586 iccsupr 9935 negfi 11202 sumrbdclem 11351 prodrbdclem 11545 fprodmodd 11615 mulgpropdg 12883 metrest 13575 bdop 14185 bj-nnen2lp 14264 exmidsbthrlem 14329 |
Copyright terms: Public domain | W3C validator |