| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3181 |
. . . . . 6
| |
| 2 | 1 | biimpi 120 |
. . . . 5
|
| 3 | 2 | 19.21bi 1581 |
. . . 4
|
| 4 | 3 | anim2d 337 |
. . 3
|
| 5 | 4 | eximdv 1903 |
. 2
|
| 6 | df-clel 2201 |
. 2
| |
| 7 | df-clel 2201 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssel2 3188 sseli 3189 sseld 3192 sstr2 3200 nelss 3254 ssrexf 3255 ssralv 3257 ssrexv 3258 ralss 3259 rexss 3260 ssconb 3306 sscon 3307 ssdif 3308 unss1 3342 ssrin 3398 difin2 3435 reuss2 3453 reupick 3457 sssnm 3795 uniss 3871 ss2iun 3942 ssiun 3969 iinss 3979 disjss2 4024 disjss1 4027 pwnss 4204 sspwb 4261 ssopab2b 4324 soss 4362 sucssel 4472 ssorduni 4536 onintonm 4566 onnmin 4617 ssnel 4618 wessep 4627 ssrel 4764 ssrel2 4766 ssrelrel 4776 xpss12 4783 cnvss 4852 dmss 4878 elreldm 4905 dmcosseq 4951 relssres 4998 iss 5006 resopab2 5007 issref 5066 ssrnres 5126 dfco2a 5184 cores 5187 funssres 5314 fununi 5343 funimaexglem 5358 dfimafn 5629 funimass4 5631 funimass3 5698 dff4im 5728 funfvima2 5819 funfvima3 5820 f1elima 5844 riotass2 5928 ssoprab2b 6004 resoprab2 6044 releldm2 6273 reldmtpos 6341 dmtpos 6344 rdgss 6471 ss2ixp 6800 fiintim 7030 negf1o 8456 lbreu 9020 lbinf 9023 eqreznegel 9737 negm 9738 iccsupr 10090 negfi 11572 sumrbdclem 11721 prodrbdclem 11915 fprodmodd 11985 mulgpropdg 13533 subgintm 13567 subrngintm 14007 subrgintm 14038 islssm 14152 lspsnel6 14203 islidlm 14274 metrest 15011 bdop 15848 bj-nnen2lp 15927 exmidsbthrlem 15998 |
| Copyright terms: Public domain | W3C validator |