Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssel | Unicode version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3131 | . . . . . 6 | |
2 | 1 | biimpi 119 | . . . . 5 |
3 | 2 | 19.21bi 1546 | . . . 4 |
4 | 3 | anim2d 335 | . . 3 |
5 | 4 | eximdv 1868 | . 2 |
6 | df-clel 2161 | . 2 | |
7 | df-clel 2161 | . 2 | |
8 | 5, 6, 7 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wex 1480 wcel 2136 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: ssel2 3137 sseli 3138 sseld 3141 sstr2 3149 nelss 3203 ssrexf 3204 ssralv 3206 ssrexv 3207 ralss 3208 rexss 3209 ssconb 3255 sscon 3256 ssdif 3257 unss1 3291 ssrin 3347 difin2 3384 reuss2 3402 reupick 3406 sssnm 3734 uniss 3810 ss2iun 3881 ssiun 3908 iinss 3917 disjss2 3962 disjss1 3965 pwnss 4138 sspwb 4194 ssopab2b 4254 soss 4292 sucssel 4402 ssorduni 4464 onintonm 4494 onnmin 4545 ssnel 4546 wessep 4555 ssrel 4692 ssrel2 4694 ssrelrel 4704 xpss12 4711 cnvss 4777 dmss 4803 elreldm 4830 dmcosseq 4875 relssres 4922 iss 4930 resopab2 4931 issref 4986 ssrnres 5046 dfco2a 5104 cores 5107 funssres 5230 fununi 5256 funimaexglem 5271 dfimafn 5535 funimass4 5537 funimass3 5601 dff4im 5631 funfvima2 5717 funfvima3 5718 f1elima 5741 riotass2 5824 ssoprab2b 5899 resoprab2 5939 releldm2 6153 reldmtpos 6221 dmtpos 6224 rdgss 6351 ss2ixp 6677 fiintim 6894 negf1o 8280 lbreu 8840 lbinf 8843 eqreznegel 9552 negm 9553 iccsupr 9902 negfi 11169 sumrbdclem 11318 prodrbdclem 11512 fprodmodd 11582 metrest 13146 bdop 13757 bj-nnen2lp 13836 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |