ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel Unicode version

Theorem ssel 3187
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssel  |-  ( A 
C_  B  ->  ( C  e.  A  ->  C  e.  B ) )

Proof of Theorem ssel
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssalel 3181 . . . . . 6  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
21biimpi 120 . . . . 5  |-  ( A 
C_  B  ->  A. x
( x  e.  A  ->  x  e.  B ) )
3219.21bi 1581 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
43anim2d 337 . . 3  |-  ( A 
C_  B  ->  (
( x  =  C  /\  x  e.  A
)  ->  ( x  =  C  /\  x  e.  B ) ) )
54eximdv 1903 . 2  |-  ( A 
C_  B  ->  ( E. x ( x  =  C  /\  x  e.  A )  ->  E. x
( x  =  C  /\  x  e.  B
) ) )
6 df-clel 2201 . 2  |-  ( C  e.  A  <->  E. x
( x  =  C  /\  x  e.  A
) )
7 df-clel 2201 . 2  |-  ( C  e.  B  <->  E. x
( x  =  C  /\  x  e.  B
) )
85, 6, 73imtr4g 205 1  |-  ( A 
C_  B  ->  ( C  e.  A  ->  C  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  ssel2  3188  sseli  3189  sseld  3192  sstr2  3200  nelss  3254  ssrexf  3255  ssralv  3257  ssrexv  3258  ralss  3259  rexss  3260  ssconb  3306  sscon  3307  ssdif  3308  unss1  3342  ssrin  3398  difin2  3435  reuss2  3453  reupick  3457  sssnm  3795  uniss  3871  ss2iun  3942  ssiun  3969  iinss  3979  disjss2  4024  disjss1  4027  pwnss  4204  sspwb  4261  ssopab2b  4324  soss  4362  sucssel  4472  ssorduni  4536  onintonm  4566  onnmin  4617  ssnel  4618  wessep  4627  ssrel  4764  ssrel2  4766  ssrelrel  4776  xpss12  4783  cnvss  4852  dmss  4878  elreldm  4905  dmcosseq  4951  relssres  4998  iss  5006  resopab2  5007  issref  5066  ssrnres  5126  dfco2a  5184  cores  5187  funssres  5314  fununi  5343  funimaexglem  5358  dfimafn  5629  funimass4  5631  funimass3  5698  dff4im  5728  funfvima2  5819  funfvima3  5820  f1elima  5844  riotass2  5928  ssoprab2b  6004  resoprab2  6044  releldm2  6273  reldmtpos  6341  dmtpos  6344  rdgss  6471  ss2ixp  6800  fiintim  7030  negf1o  8456  lbreu  9020  lbinf  9023  eqreznegel  9737  negm  9738  iccsupr  10090  negfi  11572  sumrbdclem  11721  prodrbdclem  11915  fprodmodd  11985  mulgpropdg  13533  subgintm  13567  subrngintm  14007  subrgintm  14038  islssm  14152  lspsnel6  14203  islidlm  14274  metrest  15011  bdop  15848  bj-nnen2lp  15927  exmidsbthrlem  15998
  Copyright terms: Public domain W3C validator