| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3212 |
. . . . . 6
| |
| 2 | 1 | biimpi 120 |
. . . . 5
|
| 3 | 2 | 19.21bi 1604 |
. . . 4
|
| 4 | 3 | anim2d 337 |
. . 3
|
| 5 | 4 | eximdv 1926 |
. 2
|
| 6 | df-clel 2225 |
. 2
| |
| 7 | df-clel 2225 |
. 2
| |
| 8 | 5, 6, 7 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssel2 3219 sseli 3220 sseld 3223 sstr2 3231 nelss 3285 ssrexf 3286 ssralv 3288 ssrexv 3289 ralss 3290 rexss 3291 ssconb 3337 sscon 3338 ssdif 3339 unss1 3373 ssrin 3429 difin2 3466 reuss2 3484 reupick 3488 sssnm 3832 uniss 3909 ss2iun 3980 ssiun 4007 iinss 4017 disjss2 4062 disjss1 4065 pwnss 4243 sspwb 4302 ssopab2b 4365 soss 4405 sucssel 4515 ssorduni 4579 onintonm 4609 onnmin 4660 ssnel 4661 wessep 4670 ssrel 4807 ssrel2 4809 ssrelrel 4819 xpss12 4826 cnvss 4895 dmss 4922 elreldm 4950 dmcosseq 4996 relssres 5043 iss 5051 resopab2 5052 issref 5111 ssrnres 5171 dfco2a 5229 cores 5232 funssres 5360 fununi 5389 funimaexglem 5404 dfimafn 5682 funimass4 5684 funimass3 5751 dff4im 5781 funfvima2 5872 funfvima3 5873 f1elima 5897 riotass2 5983 ssoprab2b 6061 resoprab2 6101 relmptopab 6207 releldm2 6331 reldmtpos 6399 dmtpos 6402 rdgss 6529 ss2ixp 6858 1ndom2 7026 fiintim 7093 negf1o 8528 lbreu 9092 lbinf 9095 eqreznegel 9809 negm 9810 iccsupr 10162 negfi 11739 sumrbdclem 11888 prodrbdclem 12082 fprodmodd 12152 mulgpropdg 13701 subgintm 13735 subrngintm 14176 subrgintm 14207 islssm 14321 lspsnel6 14372 islidlm 14443 metrest 15180 bdop 16238 bj-nnen2lp 16317 exmidsbthrlem 16390 |
| Copyright terms: Public domain | W3C validator |