ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3d Unicode version

Theorem necon3d 2404
Description: Contrapositive law deduction for inequality. (Contributed by NM, 10-Jun-2006.)
Hypothesis
Ref Expression
necon3d.1  |-  ( ph  ->  ( A  =  B  ->  C  =  D ) )
Assertion
Ref Expression
necon3d  |-  ( ph  ->  ( C  =/=  D  ->  A  =/=  B ) )

Proof of Theorem necon3d
StepHypRef Expression
1 necon3d.1 . . 3  |-  ( ph  ->  ( A  =  B  ->  C  =  D ) )
21necon3ad 2402 . 2  |-  ( ph  ->  ( C  =/=  D  ->  -.  A  =  B ) )
3 df-ne 2361 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
42, 3imbitrrdi 162 1  |-  ( ph  ->  ( C  =/=  D  ->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    =/= wne 2360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2361
This theorem is referenced by:  necon3i  2408  pm13.18  2441  ssn0  3480  suppssfv  6102  suppssov1  6103  nnmord  6542  findcard2  6917  findcard2s  6918  addn0nid  8361  nn0n0n1ge2  9353  xnegdi  9898  efne0  11718  divgcdcoprmex  12134  pceulem  12326  pcqmul  12335  pcqcl  12338  pcaddlem  12371  pcadd  12372  grpinvnz  13015  ringelnzr  13534  lmodfopne  13642  lmodindp1  13744
  Copyright terms: Public domain W3C validator