| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nesymi | Unicode version | ||
| Description: Inference associated with nesym 2412. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesymi.1 |
|
| Ref | Expression |
|---|---|
| nesymi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 |
. 2
| |
| 2 | nesym 2412 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: frec0g 6456 djune 7145 omp1eomlem 7161 fodjum 7213 fodju0 7214 ismkvnex 7222 mkvprop 7225 omniwomnimkv 7234 3nelsucpw1 7303 xrltnr 9856 nltmnf 9865 xnn0xadd0 9944 fnpr2ob 12993 2lgslem3 15352 2lgslem4 15354 pwle2 15653 nninfalllem1 15662 nninfall 15663 nninfsellemeq 15668 trirec0xor 15699 |
| Copyright terms: Public domain | W3C validator |