![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nesymi | Unicode version |
Description: Inference associated with nesym 2409. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nesymi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nesymi |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nesym 2409 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: frec0g 6452 djune 7139 omp1eomlem 7155 fodjum 7207 fodju0 7208 ismkvnex 7216 mkvprop 7219 omniwomnimkv 7228 3nelsucpw1 7296 xrltnr 9848 nltmnf 9857 xnn0xadd0 9936 fnpr2ob 12926 2lgslem3 15258 2lgslem4 15260 pwle2 15559 nninfalllem1 15568 nninfall 15569 nninfsellemeq 15574 trirec0xor 15605 |
Copyright terms: Public domain | W3C validator |