| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nesymi | Unicode version | ||
| Description: Inference associated with nesym 2420. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesymi.1 |
|
| Ref | Expression |
|---|---|
| nesymi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 |
. 2
| |
| 2 | nesym 2420 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-ne 2376 |
| This theorem is referenced by: frec0g 6482 djune 7179 omp1eomlem 7195 fodjum 7247 fodju0 7248 ismkvnex 7256 mkvprop 7259 omniwomnimkv 7268 3nelsucpw1 7345 xrltnr 9900 nltmnf 9909 xnn0xadd0 9988 fnpr2ob 13143 2lgslem3 15549 2lgslem4 15551 structiedg0val 15608 2omap 15894 pwle2 15897 nninfalllem1 15907 nninfall 15908 nninfsellemeq 15913 trirec0xor 15946 |
| Copyright terms: Public domain | W3C validator |