| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nesymi | Unicode version | ||
| Description: Inference associated with nesym 2423. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesymi.1 |
|
| Ref | Expression |
|---|---|
| nesymi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 |
. 2
| |
| 2 | nesym 2423 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-ne 2379 |
| This theorem is referenced by: frec0g 6506 djune 7206 omp1eomlem 7222 fodjum 7274 fodju0 7275 ismkvnex 7283 mkvprop 7286 omniwomnimkv 7295 pr2cv1 7329 3nelsucpw1 7380 xrltnr 9936 nltmnf 9945 xnn0xadd0 10024 fnpr2ob 13287 2lgslem3 15693 2lgslem4 15695 structiedg0val 15754 2omap 16132 pwle2 16137 nninfalllem1 16147 nninfall 16148 nninfsellemeq 16153 trirec0xor 16186 |
| Copyright terms: Public domain | W3C validator |