ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesymi Unicode version

Theorem nesymi 2373
Description: Inference associated with nesym 2372. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
nesymi.1  |-  A  =/= 
B
Assertion
Ref Expression
nesymi  |-  -.  B  =  A

Proof of Theorem nesymi
StepHypRef Expression
1 nesymi.1 . 2  |-  A  =/= 
B
2 nesym 2372 . 2  |-  ( A  =/=  B  <->  -.  B  =  A )
31, 2mpbi 144 1  |-  -.  B  =  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1335    =/= wne 2327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-gen 1429  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-cleq 2150  df-ne 2328
This theorem is referenced by:  frec0g  6338  djune  7012  omp1eomlem  7028  fodjum  7072  fodju0  7073  ismkvnex  7081  mkvprop  7084  omniwomnimkv  7093  3nelsucpw1  7152  xrltnr  9668  nltmnf  9677  xnn0xadd0  9753  pwle2  13530  nninfalllem1  13542  nninfall  13543  nninfsellemeq  13548  trirec0xor  13578
  Copyright terms: Public domain W3C validator