ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0neqopab Unicode version

Theorem 0neqopab 5933
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
0neqopab  |-  -.  (/)  e.  { <. x ,  y >.  |  ph }

Proof of Theorem 0neqopab
StepHypRef Expression
1 id 19 . 2  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  ->  (/)  e.  { <. x ,  y
>.  |  ph } )
2 elopab 4270 . . 3  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  <->  E. x E. y ( (/)  =  <. x ,  y >.  /\  ph ) )
3 nfopab1 4084 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ph }
43nfel2 2342 . . . . 5  |-  F/ x (/) 
e.  { <. x ,  y >.  |  ph }
54nfn 1668 . . . 4  |-  F/ x  -.  (/)  e.  { <. x ,  y >.  |  ph }
6 nfopab2 4085 . . . . . . 7  |-  F/_ y { <. x ,  y
>.  |  ph }
76nfel2 2342 . . . . . 6  |-  F/ y
(/)  e.  { <. x ,  y >.  |  ph }
87nfn 1668 . . . . 5  |-  F/ y  -.  (/)  e.  { <. x ,  y >.  |  ph }
9 vex 2752 . . . . . . . 8  |-  x  e. 
_V
10 vex 2752 . . . . . . . 8  |-  y  e. 
_V
119, 10opnzi 4247 . . . . . . 7  |-  <. x ,  y >.  =/=  (/)
12 nesym 2402 . . . . . . . 8  |-  ( <.
x ,  y >.  =/=  (/)  <->  -.  (/)  =  <. x ,  y >. )
13 pm2.21 618 . . . . . . . 8  |-  ( -.  (/)  =  <. x ,  y
>.  ->  ( (/)  =  <. x ,  y >.  ->  -.  (/) 
e.  { <. x ,  y >.  |  ph } ) )
1412, 13sylbi 121 . . . . . . 7  |-  ( <.
x ,  y >.  =/=  (/)  ->  ( (/)  =  <. x ,  y >.  ->  -.  (/) 
e.  { <. x ,  y >.  |  ph } ) )
1511, 14ax-mp 5 . . . . . 6  |-  ( (/)  =  <. x ,  y
>.  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
1615adantr 276 . . . . 5  |-  ( (
(/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
178, 16exlimi 1604 . . . 4  |-  ( E. y ( (/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
185, 17exlimi 1604 . . 3  |-  ( E. x E. y (
(/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
192, 18sylbi 121 . 2  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
201, 19pm2.65i 640 1  |-  -.  (/)  e.  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1363   E.wex 1502    e. wcel 2158    =/= wne 2357   (/)c0 3434   <.cop 3607   {copab 4075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-opab 4077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator