ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0neqopab Unicode version

Theorem 0neqopab 6049
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
0neqopab  |-  -.  (/)  e.  { <. x ,  y >.  |  ph }

Proof of Theorem 0neqopab
StepHypRef Expression
1 id 19 . 2  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  ->  (/)  e.  { <. x ,  y
>.  |  ph } )
2 elopab 4346 . . 3  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  <->  E. x E. y ( (/)  =  <. x ,  y >.  /\  ph ) )
3 nfopab1 4153 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ph }
43nfel2 2385 . . . . 5  |-  F/ x (/) 
e.  { <. x ,  y >.  |  ph }
54nfn 1704 . . . 4  |-  F/ x  -.  (/)  e.  { <. x ,  y >.  |  ph }
6 nfopab2 4154 . . . . . . 7  |-  F/_ y { <. x ,  y
>.  |  ph }
76nfel2 2385 . . . . . 6  |-  F/ y
(/)  e.  { <. x ,  y >.  |  ph }
87nfn 1704 . . . . 5  |-  F/ y  -.  (/)  e.  { <. x ,  y >.  |  ph }
9 vex 2802 . . . . . . . 8  |-  x  e. 
_V
10 vex 2802 . . . . . . . 8  |-  y  e. 
_V
119, 10opnzi 4321 . . . . . . 7  |-  <. x ,  y >.  =/=  (/)
12 nesym 2445 . . . . . . . 8  |-  ( <.
x ,  y >.  =/=  (/)  <->  -.  (/)  =  <. x ,  y >. )
13 pm2.21 620 . . . . . . . 8  |-  ( -.  (/)  =  <. x ,  y
>.  ->  ( (/)  =  <. x ,  y >.  ->  -.  (/) 
e.  { <. x ,  y >.  |  ph } ) )
1412, 13sylbi 121 . . . . . . 7  |-  ( <.
x ,  y >.  =/=  (/)  ->  ( (/)  =  <. x ,  y >.  ->  -.  (/) 
e.  { <. x ,  y >.  |  ph } ) )
1511, 14ax-mp 5 . . . . . 6  |-  ( (/)  =  <. x ,  y
>.  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
1615adantr 276 . . . . 5  |-  ( (
(/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
178, 16exlimi 1640 . . . 4  |-  ( E. y ( (/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
185, 17exlimi 1640 . . 3  |-  ( E. x E. y (
(/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
192, 18sylbi 121 . 2  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
201, 19pm2.65i 642 1  |-  -.  (/)  e.  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   (/)c0 3491   <.cop 3669   {copab 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator