ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0neqopab Unicode version

Theorem 0neqopab 5963
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
0neqopab  |-  -.  (/)  e.  { <. x ,  y >.  |  ph }

Proof of Theorem 0neqopab
StepHypRef Expression
1 id 19 . 2  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  ->  (/)  e.  { <. x ,  y
>.  |  ph } )
2 elopab 4288 . . 3  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  <->  E. x E. y ( (/)  =  <. x ,  y >.  /\  ph ) )
3 nfopab1 4098 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ph }
43nfel2 2349 . . . . 5  |-  F/ x (/) 
e.  { <. x ,  y >.  |  ph }
54nfn 1669 . . . 4  |-  F/ x  -.  (/)  e.  { <. x ,  y >.  |  ph }
6 nfopab2 4099 . . . . . . 7  |-  F/_ y { <. x ,  y
>.  |  ph }
76nfel2 2349 . . . . . 6  |-  F/ y
(/)  e.  { <. x ,  y >.  |  ph }
87nfn 1669 . . . . 5  |-  F/ y  -.  (/)  e.  { <. x ,  y >.  |  ph }
9 vex 2763 . . . . . . . 8  |-  x  e. 
_V
10 vex 2763 . . . . . . . 8  |-  y  e. 
_V
119, 10opnzi 4264 . . . . . . 7  |-  <. x ,  y >.  =/=  (/)
12 nesym 2409 . . . . . . . 8  |-  ( <.
x ,  y >.  =/=  (/)  <->  -.  (/)  =  <. x ,  y >. )
13 pm2.21 618 . . . . . . . 8  |-  ( -.  (/)  =  <. x ,  y
>.  ->  ( (/)  =  <. x ,  y >.  ->  -.  (/) 
e.  { <. x ,  y >.  |  ph } ) )
1412, 13sylbi 121 . . . . . . 7  |-  ( <.
x ,  y >.  =/=  (/)  ->  ( (/)  =  <. x ,  y >.  ->  -.  (/) 
e.  { <. x ,  y >.  |  ph } ) )
1511, 14ax-mp 5 . . . . . 6  |-  ( (/)  =  <. x ,  y
>.  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
1615adantr 276 . . . . 5  |-  ( (
(/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
178, 16exlimi 1605 . . . 4  |-  ( E. y ( (/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
185, 17exlimi 1605 . . 3  |-  ( E. x E. y (
(/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
192, 18sylbi 121 . 2  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
201, 19pm2.65i 640 1  |-  -.  (/)  e.  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164    =/= wne 2364   (/)c0 3446   <.cop 3621   {copab 4089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator