ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0neqopab Unicode version

Theorem 0neqopab 5990
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
0neqopab  |-  -.  (/)  e.  { <. x ,  y >.  |  ph }

Proof of Theorem 0neqopab
StepHypRef Expression
1 id 19 . 2  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  ->  (/)  e.  { <. x ,  y
>.  |  ph } )
2 elopab 4304 . . 3  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  <->  E. x E. y ( (/)  =  <. x ,  y >.  /\  ph ) )
3 nfopab1 4113 . . . . . 6  |-  F/_ x { <. x ,  y
>.  |  ph }
43nfel2 2361 . . . . 5  |-  F/ x (/) 
e.  { <. x ,  y >.  |  ph }
54nfn 1681 . . . 4  |-  F/ x  -.  (/)  e.  { <. x ,  y >.  |  ph }
6 nfopab2 4114 . . . . . . 7  |-  F/_ y { <. x ,  y
>.  |  ph }
76nfel2 2361 . . . . . 6  |-  F/ y
(/)  e.  { <. x ,  y >.  |  ph }
87nfn 1681 . . . . 5  |-  F/ y  -.  (/)  e.  { <. x ,  y >.  |  ph }
9 vex 2775 . . . . . . . 8  |-  x  e. 
_V
10 vex 2775 . . . . . . . 8  |-  y  e. 
_V
119, 10opnzi 4279 . . . . . . 7  |-  <. x ,  y >.  =/=  (/)
12 nesym 2421 . . . . . . . 8  |-  ( <.
x ,  y >.  =/=  (/)  <->  -.  (/)  =  <. x ,  y >. )
13 pm2.21 618 . . . . . . . 8  |-  ( -.  (/)  =  <. x ,  y
>.  ->  ( (/)  =  <. x ,  y >.  ->  -.  (/) 
e.  { <. x ,  y >.  |  ph } ) )
1412, 13sylbi 121 . . . . . . 7  |-  ( <.
x ,  y >.  =/=  (/)  ->  ( (/)  =  <. x ,  y >.  ->  -.  (/) 
e.  { <. x ,  y >.  |  ph } ) )
1511, 14ax-mp 5 . . . . . 6  |-  ( (/)  =  <. x ,  y
>.  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
1615adantr 276 . . . . 5  |-  ( (
(/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
178, 16exlimi 1617 . . . 4  |-  ( E. y ( (/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
185, 17exlimi 1617 . . 3  |-  ( E. x E. y (
(/)  =  <. x ,  y >.  /\  ph )  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
192, 18sylbi 121 . 2  |-  ( (/)  e.  { <. x ,  y
>.  |  ph }  ->  -.  (/)  e.  { <. x ,  y >.  |  ph } )
201, 19pm2.65i 640 1  |-  -.  (/)  e.  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176    =/= wne 2376   (/)c0 3460   <.cop 3636   {copab 4104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator