Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvelimfv | Unicode version |
Description: Like dvelimf 2008 but with a distinct variable constraint on and . (Contributed by Jim Kingdon, 6-Mar-2018.) |
Ref | Expression |
---|---|
dvelimfv.1 | |
dvelimfv.2 | |
dvelimfv.3 |
Ref | Expression |
---|---|
dvelimfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnae 1715 | . . . 4 | |
2 | ax12or 1501 | . . . . . . . . 9 | |
3 | orcom 723 | . . . . . . . . . 10 | |
4 | 3 | orbi2i 757 | . . . . . . . . 9 |
5 | 2, 4 | mpbi 144 | . . . . . . . 8 |
6 | orass 762 | . . . . . . . 8 | |
7 | 5, 6 | mpbir 145 | . . . . . . 7 |
8 | nfae 1712 | . . . . . . . . . . 11 | |
9 | ax16ALT 1852 | . . . . . . . . . . 11 | |
10 | 8, 9 | nfd 1516 | . . . . . . . . . 10 |
11 | dvelimfv.1 | . . . . . . . . . . . 12 | |
12 | 11 | nfi 1455 | . . . . . . . . . . 11 |
13 | 12 | a1i 9 | . . . . . . . . . 10 |
14 | 10, 13 | nfimd 1578 | . . . . . . . . 9 |
15 | df-nf 1454 | . . . . . . . . . 10 | |
16 | id 19 | . . . . . . . . . . 11 | |
17 | 12 | a1i 9 | . . . . . . . . . . 11 |
18 | 16, 17 | nfimd 1578 | . . . . . . . . . 10 |
19 | 15, 18 | sylbir 134 | . . . . . . . . 9 |
20 | 14, 19 | jaoi 711 | . . . . . . . 8 |
21 | 20 | orim1i 755 | . . . . . . 7 |
22 | 7, 21 | ax-mp 5 | . . . . . 6 |
23 | orcom 723 | . . . . . 6 | |
24 | 22, 23 | mpbi 144 | . . . . 5 |
25 | 24 | ori 718 | . . . 4 |
26 | 1, 25 | nfald 1753 | . . 3 |
27 | dvelimfv.2 | . . . . 5 | |
28 | dvelimfv.3 | . . . . 5 | |
29 | 27, 28 | equsalh 1719 | . . . 4 |
30 | 29 | nfbii 1466 | . . 3 |
31 | 26, 30 | sylib 121 | . 2 |
32 | 31 | nfrd 1513 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 703 wal 1346 wnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |