ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeud Unicode version

Theorem hbeud 2036
Description: Deduction version of hbeu 2035. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
hbeud.1  |-  ( ph  ->  A. x ph )
hbeud.2  |-  ( ph  ->  A. y ph )
hbeud.3  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
hbeud  |-  ( ph  ->  ( E! y ps 
->  A. x E! y ps ) )

Proof of Theorem hbeud
StepHypRef Expression
1 hbeud.2 . . . 4  |-  ( ph  ->  A. y ph )
21nfi 1450 . . 3  |-  F/ y
ph
3 hbeud.1 . . . . 5  |-  ( ph  ->  A. x ph )
43nfi 1450 . . . 4  |-  F/ x ph
5 hbeud.3 . . . 4  |-  ( ph  ->  ( ps  ->  A. x ps ) )
64, 5nfd 1511 . . 3  |-  ( ph  ->  F/ x ps )
72, 6nfeud 2030 . 2  |-  ( ph  ->  F/ x E! y ps )
87nfrd 1508 1  |-  ( ph  ->  ( E! y ps 
->  A. x E! y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   E!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator