ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeud Unicode version

Theorem hbeud 1970
Description: Deduction version of hbeu 1969. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
hbeud.1  |-  ( ph  ->  A. x ph )
hbeud.2  |-  ( ph  ->  A. y ph )
hbeud.3  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
hbeud  |-  ( ph  ->  ( E! y ps 
->  A. x E! y ps ) )

Proof of Theorem hbeud
StepHypRef Expression
1 hbeud.2 . . . 4  |-  ( ph  ->  A. y ph )
21nfi 1396 . . 3  |-  F/ y
ph
3 hbeud.1 . . . . 5  |-  ( ph  ->  A. x ph )
43nfi 1396 . . . 4  |-  F/ x ph
5 hbeud.3 . . . 4  |-  ( ph  ->  ( ps  ->  A. x ps ) )
64, 5nfd 1461 . . 3  |-  ( ph  ->  F/ x ps )
72, 6nfeud 1964 . 2  |-  ( ph  ->  F/ x E! y ps )
87nfrd 1458 1  |-  ( ph  ->  ( E! y ps 
->  A. x E! y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1287   E!weu 1948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator