| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbeud | Unicode version | ||
| Description: Deduction version of hbeu 2074. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.) |
| Ref | Expression |
|---|---|
| hbeud.1 |
|
| hbeud.2 |
|
| hbeud.3 |
|
| Ref | Expression |
|---|---|
| hbeud |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbeud.2 |
. . . 4
| |
| 2 | 1 | nfi 1484 |
. . 3
|
| 3 | hbeud.1 |
. . . . 5
| |
| 4 | 3 | nfi 1484 |
. . . 4
|
| 5 | hbeud.3 |
. . . 4
| |
| 6 | 4, 5 | nfd 1545 |
. . 3
|
| 7 | 2, 6 | nfeud 2069 |
. 2
|
| 8 | 7 | nfrd 1542 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |