ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeud Unicode version

Theorem hbeud 2041
Description: Deduction version of hbeu 2040. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
hbeud.1  |-  ( ph  ->  A. x ph )
hbeud.2  |-  ( ph  ->  A. y ph )
hbeud.3  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
hbeud  |-  ( ph  ->  ( E! y ps 
->  A. x E! y ps ) )

Proof of Theorem hbeud
StepHypRef Expression
1 hbeud.2 . . . 4  |-  ( ph  ->  A. y ph )
21nfi 1455 . . 3  |-  F/ y
ph
3 hbeud.1 . . . . 5  |-  ( ph  ->  A. x ph )
43nfi 1455 . . . 4  |-  F/ x ph
5 hbeud.3 . . . 4  |-  ( ph  ->  ( ps  ->  A. x ps ) )
64, 5nfd 1516 . . 3  |-  ( ph  ->  F/ x ps )
72, 6nfeud 2035 . 2  |-  ( ph  ->  F/ x E! y ps )
87nfrd 1513 1  |-  ( ph  ->  ( E! y ps 
->  A. x E! y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   E!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator