ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfald Unicode version

Theorem nfald 1753
Description: If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.)
Hypotheses
Ref Expression
nfald.1  |-  F/ y
ph
nfald.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfald  |-  ( ph  ->  F/ x A. y ps )

Proof of Theorem nfald
StepHypRef Expression
1 nfald.1 . . . 4  |-  F/ y
ph
21nfri 1512 . . 3  |-  ( ph  ->  A. y ph )
3 nfald.2 . . 3  |-  ( ph  ->  F/ x ps )
42, 3alrimih 1462 . 2  |-  ( ph  ->  A. y F/ x ps )
5 nfnf1 1537 . . . 4  |-  F/ x F/ x ps
65nfal 1569 . . 3  |-  F/ x A. y F/ x ps
7 hba1 1533 . . . 4  |-  ( A. y F/ x ps  ->  A. y A. y F/ x ps )
8 sp 1504 . . . . 5  |-  ( A. y F/ x ps  ->  F/ x ps )
98nfrd 1513 . . . 4  |-  ( A. y F/ x ps  ->  ( ps  ->  A. x ps ) )
107, 9hbald 1484 . . 3  |-  ( A. y F/ x ps  ->  ( A. y ps  ->  A. x A. y ps ) )
116, 10nfd 1516 . 2  |-  ( A. y F/ x ps  ->  F/ x A. y ps )
124, 11syl 14 1  |-  ( ph  ->  F/ x A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  dvelimALT  2003  dvelimfv  2004  nfeudv  2034  nfeqd  2327  nfraldw  2502  nfraldxy  2503  nfiotadw  5163  nfixpxy  6695  bdsepnft  13922
  Copyright terms: Public domain W3C validator