ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb4t Unicode version

Theorem nfsb4t 2007
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2005). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.)
Assertion
Ref Expression
nfsb4t  |-  ( A. x F/ z ph  ->  ( -.  A. z  z  =  y  ->  F/ z [ y  /  x ] ph ) )

Proof of Theorem nfsb4t
StepHypRef Expression
1 nfnf1 1537 . . . . 5  |-  F/ z F/ z ph
21nfal 1569 . . . 4  |-  F/ z A. x F/ z
ph
3 nfnae 1715 . . . 4  |-  F/ z  -.  A. z  z  =  y
42, 3nfan 1558 . . 3  |-  F/ z ( A. x F/ z ph  /\  -.  A. z  z  =  y )
5 df-nf 1454 . . . . . 6  |-  ( F/ z ph  <->  A. z
( ph  ->  A. z ph ) )
65albii 1463 . . . . 5  |-  ( A. x F/ z ph  <->  A. x A. z ( ph  ->  A. z ph ) )
7 hbsb4t 2006 . . . . 5  |-  ( A. x A. z ( ph  ->  A. z ph )  ->  ( -.  A. z 
z  =  y  -> 
( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph ) ) )
86, 7sylbi 120 . . . 4  |-  ( A. x F/ z ph  ->  ( -.  A. z  z  =  y  ->  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph ) ) )
98imp 123 . . 3  |-  ( ( A. x F/ z
ph  /\  -.  A. z 
z  =  y )  ->  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph ) )
104, 9nfd 1516 . 2  |-  ( ( A. x F/ z
ph  /\  -.  A. z 
z  =  y )  ->  F/ z [ y  /  x ] ph )
1110ex 114 1  |-  ( A. x F/ z ph  ->  ( -.  A. z  z  =  y  ->  F/ z [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1346   F/wnf 1453   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756
This theorem is referenced by:  dvelimdf  2009
  Copyright terms: Public domain W3C validator