| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb4t | Unicode version | ||
| Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2040). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.) |
| Ref | Expression |
|---|---|
| nfsb4t |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnf1 1567 |
. . . . 5
| |
| 2 | 1 | nfal 1599 |
. . . 4
|
| 3 | nfnae 1745 |
. . . 4
| |
| 4 | 2, 3 | nfan 1588 |
. . 3
|
| 5 | df-nf 1484 |
. . . . . 6
| |
| 6 | 5 | albii 1493 |
. . . . 5
|
| 7 | hbsb4t 2041 |
. . . . 5
| |
| 8 | 6, 7 | sylbi 121 |
. . . 4
|
| 9 | 8 | imp 124 |
. . 3
|
| 10 | 4, 9 | nfd 1546 |
. 2
|
| 11 | 10 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: dvelimdf 2044 |
| Copyright terms: Public domain | W3C validator |