| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbc1d | GIF version | ||
| Description: Deduction version of nfsbc1 3026. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsbc1d.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfsbc1d | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3009 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
| 2 | nfsbc1d.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfab1 2354 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑥 ∣ 𝜓}) |
| 5 | 2, 4 | nfeld 2368 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜓}) |
| 6 | 1, 5 | nfxfrd 1501 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1486 ∈ wcel 2180 {cab 2195 Ⅎwnfc 2339 [wsbc 3008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-sbc 3009 |
| This theorem is referenced by: nfsbc1 3026 nfcsb1d 3135 |
| Copyright terms: Public domain | W3C validator |