ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc1d GIF version

Theorem nfsbc1d 3016
Description: Deduction version of nfsbc1 3017. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1d.2 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfsbc1d (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓)

Proof of Theorem nfsbc1d
StepHypRef Expression
1 df-sbc 3000 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
2 nfsbc1d.2 . . 3 (𝜑𝑥𝐴)
3 nfab1 2351 . . . 4 𝑥{𝑥𝜓}
43a1i 9 . . 3 (𝜑𝑥{𝑥𝜓})
52, 4nfeld 2365 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑥𝜓})
61, 5nfxfrd 1499 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1484  wcel 2177  {cab 2192  wnfc 2336  [wsbc 2999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-sbc 3000
This theorem is referenced by:  nfsbc1  3017  nfcsb1d  3125
  Copyright terms: Public domain W3C validator