![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsbc1d | GIF version |
Description: Deduction version of nfsbc1 2857. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc1d.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfsbc1d | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 2841 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
2 | nfsbc1d.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfab1 2230 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑥 ∣ 𝜓}) |
5 | 2, 4 | nfeld 2244 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜓}) |
6 | 1, 5 | nfxfrd 1409 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1394 ∈ wcel 1438 {cab 2074 Ⅎwnfc 2215 [wsbc 2840 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-11 1442 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-sbc 2841 |
This theorem is referenced by: nfsbc1 2857 nfcsb1d 2961 |
Copyright terms: Public domain | W3C validator |