Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsbc1d | GIF version |
Description: Deduction version of nfsbc1 2972. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc1d.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfsbc1d | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 2956 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
2 | nfsbc1d.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfab1 2314 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑥 ∣ 𝜓}) |
5 | 2, 4 | nfeld 2328 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜓}) |
6 | 1, 5 | nfxfrd 1468 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1453 ∈ wcel 2141 {cab 2156 Ⅎwnfc 2299 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-sbc 2956 |
This theorem is referenced by: nfsbc1 2972 nfcsb1d 3080 |
Copyright terms: Public domain | W3C validator |