ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbc1d GIF version

Theorem nfsbc1d 2967
Description: Deduction version of nfsbc1 2968. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1d.2 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfsbc1d (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓)

Proof of Theorem nfsbc1d
StepHypRef Expression
1 df-sbc 2952 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
2 nfsbc1d.2 . . 3 (𝜑𝑥𝐴)
3 nfab1 2310 . . . 4 𝑥{𝑥𝜓}
43a1i 9 . . 3 (𝜑𝑥{𝑥𝜓})
52, 4nfeld 2324 . 2 (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑥𝜓})
61, 5nfxfrd 1463 1 (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1448  wcel 2136  {cab 2151  wnfc 2295  [wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-sbc 2952
This theorem is referenced by:  nfsbc1  2968  nfcsb1d  3076
  Copyright terms: Public domain W3C validator