ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 Unicode version

Theorem nfab1 2321
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1  |-  F/_ x { x  |  ph }

Proof of Theorem nfab1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2167 . 2  |-  F/ x  y  e.  { x  |  ph }
21nfci 2309 1  |-  F/_ x { x  |  ph }
Colors of variables: wff set class
Syntax hints:   {cab 2163   F/_wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-nfc 2308
This theorem is referenced by:  abid2f  2345  nfrab1  2657  elabgt  2879  elabgf  2880  nfsbc1d  2980  ss2ab  3224  abn0r  3448  euabsn  3663  iunab  3934  iinab  3949  sniota  5208  nfixp1  6718  elabgft1  14533  elabgf2  14535
  Copyright terms: Public domain W3C validator