ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 Unicode version

Theorem nfab1 2227
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1  |-  F/_ x { x  |  ph }

Proof of Theorem nfab1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2075 . 2  |-  F/ x  y  e.  { x  |  ph }
21nfci 2215 1  |-  F/_ x { x  |  ph }
Colors of variables: wff set class
Syntax hints:   {cab 2071   F/_wnfc 2212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-11 1440  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470
This theorem depends on definitions:  df-bi 115  df-nf 1393  df-sb 1690  df-clab 2072  df-nfc 2214
This theorem is referenced by:  abid2f  2249  nfrab1  2542  elabgt  2748  elabgf  2749  nfsbc1d  2845  ss2ab  3078  abn0r  3296  euabsn  3497  iunab  3761  iinab  3776  sniota  4975  elabgft1  11166  elabgf2  11168
  Copyright terms: Public domain W3C validator