ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 Unicode version

Theorem nfab1 2349
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1  |-  F/_ x { x  |  ph }

Proof of Theorem nfab1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2194 . 2  |-  F/ x  y  e.  { x  |  ph }
21nfci 2337 1  |-  F/_ x { x  |  ph }
Colors of variables: wff set class
Syntax hints:   {cab 2190   F/_wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-nfc 2336
This theorem is referenced by:  abid2f  2373  nfrab1  2685  elabgt  2913  elabgf  2914  nfsbc1d  3014  ss2ab  3260  abn0r  3484  euabsn  3702  iunab  3973  iinab  3988  iotaexab  5249  sniota  5261  nfixp1  6804  elabgft1  15676  elabgf2  15678
  Copyright terms: Public domain W3C validator