ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 Unicode version

Theorem nfab1 2352
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1  |-  F/_ x { x  |  ph }

Proof of Theorem nfab1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2197 . 2  |-  F/ x  y  e.  { x  |  ph }
21nfci 2340 1  |-  F/_ x { x  |  ph }
Colors of variables: wff set class
Syntax hints:   {cab 2193   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-nfc 2339
This theorem is referenced by:  abid2f  2376  nfrab1  2688  elabgt  2921  elabgf  2922  nfsbc1d  3022  ss2ab  3269  abn0r  3493  euabsn  3713  iunab  3988  iinab  4003  iotaexab  5269  sniota  5281  nfixp1  6828  elabgft1  15914  elabgf2  15916
  Copyright terms: Public domain W3C validator