ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfab1 Unicode version

Theorem nfab1 2283
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfab1  |-  F/_ x { x  |  ph }

Proof of Theorem nfab1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfsab1 2129 . 2  |-  F/ x  y  e.  { x  |  ph }
21nfci 2271 1  |-  F/_ x { x  |  ph }
Colors of variables: wff set class
Syntax hints:   {cab 2125   F/_wnfc 2268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-nfc 2270
This theorem is referenced by:  abid2f  2306  nfrab1  2610  elabgt  2825  elabgf  2826  nfsbc1d  2925  ss2ab  3165  abn0r  3387  euabsn  3593  iunab  3859  iinab  3874  sniota  5115  nfixp1  6612  elabgft1  13015  elabgf2  13017
  Copyright terms: Public domain W3C validator