ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsb1d Unicode version

Theorem nfcsb1d 3132
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfcsb1d.1  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfcsb1d  |-  ( ph  -> 
F/_ x [_ A  /  x ]_ B )

Proof of Theorem nfcsb1d
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-csb 3102 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
2 nfv 1552 . . 3  |-  F/ y
ph
3 nfcsb1d.1 . . . 4  |-  ( ph  -> 
F/_ x A )
43nfsbc1d 3022 . . 3  |-  ( ph  ->  F/ x [. A  /  x ]. y  e.  B )
52, 4nfabd 2370 . 2  |-  ( ph  -> 
F/_ x { y  |  [. A  /  x ]. y  e.  B } )
61, 5nfcxfrd 2348 1  |-  ( ph  -> 
F/_ x [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   {cab 2193   F/_wnfc 2337   [.wsbc 3005   [_csb 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-sbc 3006  df-csb 3102
This theorem is referenced by:  nfcsb1  3133
  Copyright terms: Public domain W3C validator