| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbv | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfsbv.nf |
|
| Ref | Expression |
|---|---|
| nfsbv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 1809 |
. 2
| |
| 2 | nfv 1574 |
. . . 4
| |
| 3 | nfsbv.nf |
. . . 4
| |
| 4 | 2, 3 | nfim 1618 |
. . 3
|
| 5 | 2, 3 | nfan 1611 |
. . . 4
|
| 6 | 5 | nfex 1683 |
. . 3
|
| 7 | 4, 6 | nfan 1611 |
. 2
|
| 8 | 1, 7 | nfxfr 1520 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: sbco2v 1999 cbvabw 2352 |
| Copyright terms: Public domain | W3C validator |