![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsb | Unicode version |
Description: If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfsb.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfsb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | nfsbxy 1942 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | nfsbxy 1942 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | ax-17 1526 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | sbco2vh 1945 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | nfbii 1473 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | mpbi 145 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 |
This theorem is referenced by: hbsb 1949 sbco2yz 1963 sbcomxyyz 1972 hbsbd 1982 nfsb4or 2021 sb8eu 2039 nfeu 2045 cbvab 2301 cbvralf 2697 cbvrexf 2698 cbvreu 2703 cbvralsv 2721 cbvrexsv 2722 cbvrab 2737 cbvreucsf 3123 cbvrabcsf 3124 cbvopab1 4078 cbvmptf 4099 cbvmpt 4100 ralxpf 4775 rexxpf 4776 cbviota 5185 sb8iota 5187 cbvriota 5843 dfoprab4f 6196 |
Copyright terms: Public domain | W3C validator |