| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfsb.1 |
|
| Ref | Expression |
|---|---|
| nfsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsb.1 |
. . . 4
| |
| 2 | 1 | nfsbxy 1970 |
. . 3
|
| 3 | 2 | nfsbxy 1970 |
. 2
|
| 4 | ax-17 1549 |
. . . 4
| |
| 5 | 4 | sbco2vh 1973 |
. . 3
|
| 6 | 5 | nfbii 1496 |
. 2
|
| 7 | 3, 6 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: hbsb 1977 sbco2yz 1991 sbcomxyyz 2000 hbsbd 2010 nfsb4or 2049 sb8eu 2067 nfeu 2073 cbvab 2329 cbvralf 2730 cbvrexf 2731 cbvreu 2736 cbvralsv 2754 cbvrexsv 2755 cbvrab 2770 cbvreucsf 3158 cbvrabcsf 3159 cbvopab1 4117 cbvmptf 4138 cbvmpt 4139 ralxpf 4824 rexxpf 4825 cbviota 5237 sb8iota 5239 cbvriota 5910 dfoprab4f 6279 |
| Copyright terms: Public domain | W3C validator |