ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb Unicode version

Theorem nfsb 1962
Description: If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  y and  z are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
nfsb.1  |-  F/ z
ph
Assertion
Ref Expression
nfsb  |-  F/ z [ y  /  x ] ph
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem nfsb
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfsb.1 . . . 4  |-  F/ z
ph
21nfsbxy 1958 . . 3  |-  F/ z [ w  /  x ] ph
32nfsbxy 1958 . 2  |-  F/ z [ y  /  w ] [ w  /  x ] ph
4 ax-17 1537 . . . 4  |-  ( ph  ->  A. w ph )
54sbco2vh 1961 . . 3  |-  ( [ y  /  w ] [ w  /  x ] ph  <->  [ y  /  x ] ph )
65nfbii 1484 . 2  |-  ( F/ z [ y  /  w ] [ w  /  x ] ph  <->  F/ z [ y  /  x ] ph )
73, 6mpbi 145 1  |-  F/ z [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1471   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  hbsb  1965  sbco2yz  1979  sbcomxyyz  1988  hbsbd  1998  nfsb4or  2037  sb8eu  2055  nfeu  2061  cbvab  2317  cbvralf  2718  cbvrexf  2719  cbvreu  2724  cbvralsv  2742  cbvrexsv  2743  cbvrab  2758  cbvreucsf  3146  cbvrabcsf  3147  cbvopab1  4103  cbvmptf  4124  cbvmpt  4125  ralxpf  4809  rexxpf  4810  cbviota  5221  sb8iota  5223  cbvriota  5885  dfoprab4f  6248
  Copyright terms: Public domain W3C validator