| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfsb.1 |
|
| Ref | Expression |
|---|---|
| nfsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsb.1 |
. . . 4
| |
| 2 | 1 | nfsbxy 1971 |
. . 3
|
| 3 | 2 | nfsbxy 1971 |
. 2
|
| 4 | ax-17 1550 |
. . . 4
| |
| 5 | 4 | sbco2vh 1974 |
. . 3
|
| 6 | 5 | nfbii 1497 |
. 2
|
| 7 | 3, 6 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: hbsb 1978 sbco2yz 1992 sbcomxyyz 2001 hbsbd 2011 nfsb4or 2050 sb8eu 2068 nfeu 2074 cbvab 2331 cbvralf 2733 cbvrexf 2734 cbvreu 2740 cbvralsv 2758 cbvrexsv 2759 cbvrab 2774 cbvreucsf 3166 cbvrabcsf 3167 cbvopab1 4133 cbvmptf 4154 cbvmpt 4155 ralxpf 4842 rexxpf 4843 cbviota 5256 sb8iota 5258 cbvriota 5933 dfoprab4f 6302 |
| Copyright terms: Public domain | W3C validator |