| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfsb.1 |
|
| Ref | Expression |
|---|---|
| nfsb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsb.1 |
. . . 4
| |
| 2 | 1 | nfsbxy 1993 |
. . 3
|
| 3 | 2 | nfsbxy 1993 |
. 2
|
| 4 | ax-17 1572 |
. . . 4
| |
| 5 | 4 | sbco2vh 1996 |
. . 3
|
| 6 | 5 | nfbii 1519 |
. 2
|
| 7 | 3, 6 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: hbsb 2000 sbco2yz 2014 sbcomxyyz 2023 hbsbd 2033 nfsb4or 2072 sb8eu 2090 nfeu 2096 cbvab 2353 cbvralf 2756 cbvrexf 2757 cbvreu 2763 cbvralsv 2781 cbvrexsv 2782 cbvrab 2797 cbvreucsf 3189 cbvrabcsf 3190 cbvopab1 4157 cbvmptf 4178 cbvmpt 4179 ralxpf 4868 rexxpf 4869 cbviota 5283 sb8iota 5286 cbvriota 5966 dfoprab4f 6339 |
| Copyright terms: Public domain | W3C validator |