ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb Unicode version

Theorem nfsb 1939
Description: If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  y and  z are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
nfsb.1  |-  F/ z
ph
Assertion
Ref Expression
nfsb  |-  F/ z [ y  /  x ] ph
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem nfsb
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfsb.1 . . . 4  |-  F/ z
ph
21nfsbxy 1935 . . 3  |-  F/ z [ w  /  x ] ph
32nfsbxy 1935 . 2  |-  F/ z [ y  /  w ] [ w  /  x ] ph
4 ax-17 1519 . . . 4  |-  ( ph  ->  A. w ph )
54sbco2vh 1938 . . 3  |-  ( [ y  /  w ] [ w  /  x ] ph  <->  [ y  /  x ] ph )
65nfbii 1466 . 2  |-  ( F/ z [ y  /  w ] [ w  /  x ] ph  <->  F/ z [ y  /  x ] ph )
73, 6mpbi 144 1  |-  F/ z [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1453   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  hbsb  1942  sbco2yz  1956  sbcomxyyz  1965  hbsbd  1975  nfsb4or  2014  sb8eu  2032  nfeu  2038  cbvab  2294  cbvralf  2689  cbvrexf  2690  cbvreu  2694  cbvralsv  2712  cbvrexsv  2713  cbvrab  2728  cbvreucsf  3113  cbvrabcsf  3114  cbvopab1  4062  cbvmptf  4083  cbvmpt  4084  ralxpf  4757  rexxpf  4758  cbviota  5165  sb8iota  5167  cbvriota  5819  dfoprab4f  6172
  Copyright terms: Public domain W3C validator