Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsb | Unicode version |
Description: If is not free in , it is not free in when and are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
Ref | Expression |
---|---|
nfsb.1 |
Ref | Expression |
---|---|
nfsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb.1 | . . . 4 | |
2 | 1 | nfsbxy 1940 | . . 3 |
3 | 2 | nfsbxy 1940 | . 2 |
4 | ax-17 1524 | . . . 4 | |
5 | 4 | sbco2vh 1943 | . . 3 |
6 | 5 | nfbii 1471 | . 2 |
7 | 3, 6 | mpbi 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wnf 1458 wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 |
This theorem is referenced by: hbsb 1947 sbco2yz 1961 sbcomxyyz 1970 hbsbd 1980 nfsb4or 2019 sb8eu 2037 nfeu 2043 cbvab 2299 cbvralf 2694 cbvrexf 2695 cbvreu 2699 cbvralsv 2717 cbvrexsv 2718 cbvrab 2733 cbvreucsf 3119 cbvrabcsf 3120 cbvopab1 4071 cbvmptf 4092 cbvmpt 4093 ralxpf 4766 rexxpf 4767 cbviota 5175 sb8iota 5177 cbvriota 5831 dfoprab4f 6184 |
Copyright terms: Public domain | W3C validator |