Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsb | Unicode version |
Description: If is not free in , it is not free in when and are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
Ref | Expression |
---|---|
nfsb.1 |
Ref | Expression |
---|---|
nfsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsb.1 | . . . 4 | |
2 | 1 | nfsbxy 1930 | . . 3 |
3 | 2 | nfsbxy 1930 | . 2 |
4 | ax-17 1514 | . . . 4 | |
5 | 4 | sbco2vh 1933 | . . 3 |
6 | 5 | nfbii 1461 | . 2 |
7 | 3, 6 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wnf 1448 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: hbsb 1937 sbco2yz 1951 sbcomxyyz 1960 hbsbd 1970 nfsb4or 2009 sb8eu 2027 nfeu 2033 cbvab 2290 cbvralf 2685 cbvrexf 2686 cbvreu 2690 cbvralsv 2708 cbvrexsv 2709 cbvrab 2724 cbvreucsf 3109 cbvrabcsf 3110 cbvopab1 4055 cbvmptf 4076 cbvmpt 4077 ralxpf 4750 rexxpf 4751 cbviota 5158 sb8iota 5160 cbvriota 5808 dfoprab4f 6161 |
Copyright terms: Public domain | W3C validator |