ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb Unicode version

Theorem nfsb 1946
Description: If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  y and  z are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
nfsb.1  |-  F/ z
ph
Assertion
Ref Expression
nfsb  |-  F/ z [ y  /  x ] ph
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem nfsb
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfsb.1 . . . 4  |-  F/ z
ph
21nfsbxy 1942 . . 3  |-  F/ z [ w  /  x ] ph
32nfsbxy 1942 . 2  |-  F/ z [ y  /  w ] [ w  /  x ] ph
4 ax-17 1526 . . . 4  |-  ( ph  ->  A. w ph )
54sbco2vh 1945 . . 3  |-  ( [ y  /  w ] [ w  /  x ] ph  <->  [ y  /  x ] ph )
65nfbii 1473 . 2  |-  ( F/ z [ y  /  w ] [ w  /  x ] ph  <->  F/ z [ y  /  x ] ph )
73, 6mpbi 145 1  |-  F/ z [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:   F/wnf 1460   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  hbsb  1949  sbco2yz  1963  sbcomxyyz  1972  hbsbd  1982  nfsb4or  2021  sb8eu  2039  nfeu  2045  cbvab  2301  cbvralf  2697  cbvrexf  2698  cbvreu  2703  cbvralsv  2721  cbvrexsv  2722  cbvrab  2737  cbvreucsf  3123  cbvrabcsf  3124  cbvopab1  4078  cbvmptf  4099  cbvmpt  4100  ralxpf  4775  rexxpf  4776  cbviota  5185  sb8iota  5187  cbvriota  5843  dfoprab4f  6196
  Copyright terms: Public domain W3C validator