![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfan | Unicode version |
Description: If ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfan.1 |
![]() ![]() ![]() ![]() |
nfan.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfan |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfan.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfan.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | nfan1 1508 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 ax-4 1452 |
This theorem depends on definitions: df-bi 116 df-nf 1402 |
This theorem is referenced by: nf3an 1510 cbvex2 1852 nfsbxyt 1874 sbcomxyyz 1901 nfsb4t 1945 clelab 2219 nfel 2244 2ralbida 2410 r19.29an 2524 reean 2549 nfrabxy 2561 cbvrexf 2599 cbvreu 2602 cbvrab 2631 ceqsex2 2673 vtocl2gaf 2700 rspce 2731 eqvincf 2756 elrabf 2783 elrab3t 2784 rexab2 2795 morex 2813 reu2 2817 rmo3f 2826 sbc2iegf 2923 rmo2ilem 2942 rmo3 2944 csbiebt 2981 csbie2t 2990 cbvrexcsf 3005 cbvreucsf 3006 cbvrabcsf 3007 nfopd 3661 eluniab 3687 dfnfc2 3693 nfdisjv 3856 disjiun 3862 nfopab 3928 cbvopab 3931 cbvopab1 3933 cbvopab2 3934 cbvopab1s 3935 mpteq12f 3940 nfmpt 3952 cbvmptf 3954 cbvmpt 3955 repizf2 4018 nfpo 4152 nfso 4153 nfwe 4206 onintonm 4362 peano2 4438 nfxp 4494 opeliunxp 4522 nfco 4632 elrnmpt1 4718 nfimad 4816 iota2 5040 dffun4f 5065 nffun 5072 imadif 5128 funimaexglem 5131 nffn 5144 nff 5192 nff1 5249 nffo 5267 nff1o 5286 fun11iun 5309 nffvd 5352 fv3 5363 fmptco 5503 nfiso 5623 cbvriota 5656 riota2df 5666 riota5f 5670 nfoprab 5739 mpt2eq123 5746 nfmpt2 5755 cbvoprab1 5758 cbvoprab2 5759 cbvoprab12 5760 cbvoprab3 5762 cbvmpt2x 5764 ovmpt2dxf 5808 opabex3d 5930 opabex3 5931 dfoprab4f 6001 fmpt2x 6008 spc2ed 6036 cnvoprab 6037 f1od2 6038 opeliunxp2f 6041 nfrecs 6110 tfri3 6170 nffrec 6199 erovlem 6424 nfixpxy 6514 nfixp1 6515 xpf1o 6640 nneneq 6653 ac6sfi 6694 nfsup 6767 exmidomni 6885 fodjuomnilemdc 6887 mkvprop 6901 exmidfodomrlemr 6925 exmidfodomrlemrALT 6926 caucvgsrlemgt1 7437 supinfneg 9182 infsupneg 9183 fimaxre2 10789 nfsum1 10915 nfsum 10916 fsumsplitf 10967 fsum2dlemstep 10993 fsum00 11021 zsupcllemstep 11384 bezoutlemmain 11430 bezoutlemzz 11434 bezout 11443 mulcncf 12370 bdsepnft 12502 bdsepnfALT 12504 bj-findis 12598 strcollnft 12603 |
Copyright terms: Public domain | W3C validator |