ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbv GIF version

Theorem nfsbv 1947
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1946 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
nfsbv.nf 𝑧𝜑
Assertion
Ref Expression
nfsbv 𝑧[𝑦 / 𝑥]𝜑
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsbv
StepHypRef Expression
1 df-sb 1763 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
2 nfv 1528 . . . 4 𝑧 𝑥 = 𝑦
3 nfsbv.nf . . . 4 𝑧𝜑
42, 3nfim 1572 . . 3 𝑧(𝑥 = 𝑦𝜑)
52, 3nfan 1565 . . . 4 𝑧(𝑥 = 𝑦𝜑)
65nfex 1637 . . 3 𝑧𝑥(𝑥 = 𝑦𝜑)
74, 6nfan 1565 . 2 𝑧((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑))
81, 7nfxfr 1474 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wnf 1460  wex 1492  [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  sbco2v  1948  cbvabw  2300
  Copyright terms: Public domain W3C validator