| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbv | GIF version | ||
| Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1974 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| nfsbv.nf | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfsbv | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 1786 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 2 | nfv 1551 | . . . 4 ⊢ Ⅎ𝑧 𝑥 = 𝑦 | |
| 3 | nfsbv.nf | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 4 | 2, 3 | nfim 1595 | . . 3 ⊢ Ⅎ𝑧(𝑥 = 𝑦 → 𝜑) |
| 5 | 2, 3 | nfan 1588 | . . . 4 ⊢ Ⅎ𝑧(𝑥 = 𝑦 ∧ 𝜑) |
| 6 | 5 | nfex 1660 | . . 3 ⊢ Ⅎ𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑) |
| 7 | 4, 6 | nfan 1588 | . 2 ⊢ Ⅎ𝑧((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| 8 | 1, 7 | nfxfr 1497 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1483 ∃wex 1515 [wsb 1785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: sbco2v 1976 cbvabw 2328 |
| Copyright terms: Public domain | W3C validator |