![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsbv | GIF version |
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1958 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
Ref | Expression |
---|---|
nfsbv.nf | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsbv | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 1774 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
2 | nfv 1539 | . . . 4 ⊢ Ⅎ𝑧 𝑥 = 𝑦 | |
3 | nfsbv.nf | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
4 | 2, 3 | nfim 1583 | . . 3 ⊢ Ⅎ𝑧(𝑥 = 𝑦 → 𝜑) |
5 | 2, 3 | nfan 1576 | . . . 4 ⊢ Ⅎ𝑧(𝑥 = 𝑦 ∧ 𝜑) |
6 | 5 | nfex 1648 | . . 3 ⊢ Ⅎ𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑) |
7 | 4, 6 | nfan 1576 | . 2 ⊢ Ⅎ𝑧((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
8 | 1, 7 | nfxfr 1485 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 Ⅎwnf 1471 ∃wex 1503 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: sbco2v 1960 cbvabw 2312 |
Copyright terms: Public domain | W3C validator |