Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsbv | GIF version |
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1939 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
nfsbv.nf | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsbv | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 1756 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
2 | nfv 1521 | . . . 4 ⊢ Ⅎ𝑧 𝑥 = 𝑦 | |
3 | nfsbv.nf | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
4 | 2, 3 | nfim 1565 | . . 3 ⊢ Ⅎ𝑧(𝑥 = 𝑦 → 𝜑) |
5 | 2, 3 | nfan 1558 | . . . 4 ⊢ Ⅎ𝑧(𝑥 = 𝑦 ∧ 𝜑) |
6 | 5 | nfex 1630 | . . 3 ⊢ Ⅎ𝑧∃𝑥(𝑥 = 𝑦 ∧ 𝜑) |
7 | 4, 6 | nfan 1558 | . 2 ⊢ Ⅎ𝑧((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
8 | 1, 7 | nfxfr 1467 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 Ⅎwnf 1453 ∃wex 1485 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbco2v 1941 cbvabw 2293 |
Copyright terms: Public domain | W3C validator |