ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbv GIF version

Theorem nfsbv 1935
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑧 is distinct from 𝑥 and 𝑦. Version of nfsb 1934 requiring more disjoint variables. (Contributed by Wolf Lammen, 7-Feb-2023.) Remove disjoint variable condition on 𝑥, 𝑦. (Revised by Steven Nguyen, 13-Aug-2023.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
nfsbv.nf 𝑧𝜑
Assertion
Ref Expression
nfsbv 𝑧[𝑦 / 𝑥]𝜑
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsbv
StepHypRef Expression
1 df-sb 1751 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
2 nfv 1516 . . . 4 𝑧 𝑥 = 𝑦
3 nfsbv.nf . . . 4 𝑧𝜑
42, 3nfim 1560 . . 3 𝑧(𝑥 = 𝑦𝜑)
52, 3nfan 1553 . . . 4 𝑧(𝑥 = 𝑦𝜑)
65nfex 1625 . . 3 𝑧𝑥(𝑥 = 𝑦𝜑)
74, 6nfan 1553 . 2 𝑧((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑))
81, 7nfxfr 1462 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wnf 1448  wex 1480  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbco2v  1936  cbvabw  2289
  Copyright terms: Public domain W3C validator