ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwjust Unicode version

Theorem pwjust 3627
Description: Soundness justification theorem for df-pw 3628. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pwjust  |-  { x  |  x  C_  A }  =  { y  |  y 
C_  A }
Distinct variable groups:    x, A    y, A

Proof of Theorem pwjust
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sseq1 3224 . . 3  |-  ( x  =  z  ->  (
x  C_  A  <->  z  C_  A ) )
21cbvabv 2332 . 2  |-  { x  |  x  C_  A }  =  { z  |  z 
C_  A }
3 sseq1 3224 . . 3  |-  ( z  =  y  ->  (
z  C_  A  <->  y  C_  A ) )
43cbvabv 2332 . 2  |-  { z  |  z  C_  A }  =  { y  |  y  C_  A }
52, 4eqtri 2228 1  |-  { x  |  x  C_  A }  =  { y  |  y 
C_  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   {cab 2193    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator