ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwjust Unicode version

Theorem pwjust 3606
Description: Soundness justification theorem for df-pw 3607. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pwjust  |-  { x  |  x  C_  A }  =  { y  |  y 
C_  A }
Distinct variable groups:    x, A    y, A

Proof of Theorem pwjust
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sseq1 3206 . . 3  |-  ( x  =  z  ->  (
x  C_  A  <->  z  C_  A ) )
21cbvabv 2321 . 2  |-  { x  |  x  C_  A }  =  { z  |  z 
C_  A }
3 sseq1 3206 . . 3  |-  ( z  =  y  ->  (
z  C_  A  <->  y  C_  A ) )
43cbvabv 2321 . 2  |-  { z  |  z  C_  A }  =  { y  |  y  C_  A }
52, 4eqtri 2217 1  |-  { x  |  x  C_  A }  =  { y  |  y 
C_  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {cab 2182    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator