![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1 | Unicode version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3194 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sstr2 3186 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | adantl 277 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | sstr2 3186 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | adantr 276 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | impbid 129 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sseq12 3204 sseq1i 3205 sseq1d 3208 nssne2 3238 sbss 3554 pwjust 3602 elpw 3607 elpwg 3609 sssnr 3779 ssprr 3782 sstpr 3783 unimax 3869 trss 4136 elssabg 4177 bnd2 4202 exmidexmid 4225 exmidsssn 4231 exmidsssnc 4232 exmid1stab 4237 mss 4255 exss 4256 frforeq2 4376 ordtri2orexmid 4555 ontr2exmid 4557 onsucsssucexmid 4559 reg2exmidlema 4566 sucprcreg 4581 ordtri2or2exmid 4603 ontri2orexmidim 4604 onintexmid 4605 tfis 4615 tfisi 4619 elomssom 4637 nnregexmid 4653 releq 4741 xpsspw 4771 iss 4988 relcnvtr 5185 iotass 5232 fununi 5322 funcnvuni 5323 funimaexglem 5337 ffoss 5532 ssimaex 5618 tfrlem1 6361 el2oss1o 6496 nnsucsssuc 6545 qsss 6648 phpm 6921 ssfiexmid 6932 findcard2d 6947 findcard2sd 6948 diffifi 6950 isinfinf 6953 fiintim 6985 fisseneq 6988 fidcenumlemrk 7013 fidcenumlemr 7014 sbthlem2 7017 isbth 7026 ctssdclemr 7171 onntri45 7301 tapeq1 7312 elinp 7534 sup3exmid 8976 zfz1isolem1 10911 zfz1iso 10912 fimaxre2 11370 sumeq1 11498 fsum2d 11578 fsumabs 11608 fsumiun 11620 prodeq1f 11695 fprod2d 11766 exmidunben 12583 ctiunct 12597 ssomct 12602 restsspw 12860 lspval 13886 uniopn 14169 fiinopn 14172 fiinbas 14217 baspartn 14218 eltg2 14221 eltg3 14225 topbas 14235 clsval 14279 neival 14311 neiint 14313 neipsm 14322 opnneissb 14323 opnssneib 14324 innei 14331 restbasg 14336 cnpdis 14410 txbas 14426 eltx 14427 neitx 14436 txlm 14447 blssexps 14597 blssex 14598 neibl 14659 metrest 14674 xmettx 14678 tgioo 14714 tgqioo 14715 limcimolemlt 14818 recnprss 14841 bj-om 15429 bj-2inf 15430 bj-nntrans 15443 bj-omtrans 15448 subctctexmid 15491 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |