![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq1 | Unicode version |
Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
sseq1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3185 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sstr2 3177 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | adantl 277 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | sstr2 3177 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | adantr 276 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | impbid 129 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | sylbi 121 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: sseq12 3195 sseq1i 3196 sseq1d 3199 nssne2 3229 sbss 3546 pwjust 3591 elpw 3596 elpwg 3598 sssnr 3768 ssprr 3771 sstpr 3772 unimax 3858 trss 4125 elssabg 4166 bnd2 4191 exmidexmid 4214 exmidsssn 4220 exmidsssnc 4221 exmid1stab 4226 mss 4244 exss 4245 frforeq2 4363 ordtri2orexmid 4540 ontr2exmid 4542 onsucsssucexmid 4544 reg2exmidlema 4551 sucprcreg 4566 ordtri2or2exmid 4588 ontri2orexmidim 4589 onintexmid 4590 tfis 4600 tfisi 4604 elomssom 4622 nnregexmid 4638 releq 4726 xpsspw 4756 iss 4971 relcnvtr 5166 iotass 5213 fununi 5303 funcnvuni 5304 funimaexglem 5318 ffoss 5512 ssimaex 5598 tfrlem1 6334 el2oss1o 6469 nnsucsssuc 6518 qsss 6621 phpm 6894 ssfiexmid 6905 findcard2d 6920 findcard2sd 6921 diffifi 6923 isinfinf 6926 fiintim 6958 fisseneq 6961 fidcenumlemrk 6984 fidcenumlemr 6985 sbthlem2 6988 isbth 6997 ctssdclemr 7142 onntri45 7271 tapeq1 7282 elinp 7504 sup3exmid 8945 zfz1isolem1 10855 zfz1iso 10856 fimaxre2 11270 sumeq1 11398 fsum2d 11478 fsumabs 11508 fsumiun 11520 prodeq1f 11595 fprod2d 11666 exmidunben 12480 ctiunct 12494 ssomct 12499 restsspw 12757 lspval 13723 uniopn 13978 fiinopn 13981 fiinbas 14026 baspartn 14027 eltg2 14030 eltg3 14034 topbas 14044 clsval 14088 neival 14120 neiint 14122 neipsm 14131 opnneissb 14132 opnssneib 14133 innei 14140 restbasg 14145 cnpdis 14219 txbas 14235 eltx 14236 neitx 14245 txlm 14256 blssexps 14406 blssex 14407 neibl 14468 metrest 14483 xmettx 14487 tgioo 14523 tgqioo 14524 limcimolemlt 14610 recnprss 14633 bj-om 15167 bj-2inf 15168 bj-nntrans 15181 bj-omtrans 15186 subctctexmid 15229 pw1nct 15231 |
Copyright terms: Public domain | W3C validator |