| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1 | Unicode version | ||
| Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3216 |
. 2
| |
| 2 | sstr2 3208 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | sstr2 3208 |
. . . 4
| |
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | 3, 5 | impbid 129 |
. 2
|
| 7 | 1, 6 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sseq12 3226 sseq1i 3227 sseq1d 3230 nssne2 3260 sbss 3576 pwjust 3627 elpw 3632 elpwg 3634 sssnr 3807 ssprr 3810 sstpr 3811 unimax 3898 trss 4167 elssabg 4208 bnd2 4233 exmidexmid 4256 exmidsssn 4262 exmidsssnc 4263 exmid1stab 4268 mss 4288 exss 4289 frforeq2 4410 ordtri2orexmid 4589 ontr2exmid 4591 onsucsssucexmid 4593 reg2exmidlema 4600 sucprcreg 4615 ordtri2or2exmid 4637 ontri2orexmidim 4638 onintexmid 4639 tfis 4649 tfisi 4653 elomssom 4671 nnregexmid 4687 releq 4775 xpsspw 4805 iss 5024 relcnvtr 5221 iotass 5268 fununi 5361 funcnvuni 5362 funimaexglem 5376 ffoss 5576 ssimaex 5663 tfrlem1 6417 el2oss1o 6552 nnsucsssuc 6601 qsss 6704 phpm 6988 ssfiexmid 6999 findcard2d 7014 findcard2sd 7015 diffifi 7017 isinfinf 7020 fiintim 7054 fisseneq 7057 fidcenumlemrk 7082 fidcenumlemr 7083 sbthlem2 7086 isbth 7095 ctssdclemr 7240 onntri45 7387 tapeq1 7399 elinp 7622 sup3exmid 9065 zfz1isolem1 11022 zfz1iso 11023 fimaxre2 11653 sumeq1 11781 fsum2d 11861 fsumabs 11891 fsumiun 11903 prodeq1f 11978 fprod2d 12049 exmidunben 12912 ctiunct 12926 ssomct 12931 restsspw 13196 lspval 14267 uniopn 14588 fiinopn 14591 fiinbas 14636 baspartn 14637 eltg2 14640 eltg3 14644 topbas 14654 clsval 14698 neival 14730 neiint 14732 neipsm 14741 opnneissb 14742 opnssneib 14743 innei 14750 restbasg 14755 cnpdis 14829 txbas 14845 eltx 14846 neitx 14855 txlm 14866 blssexps 15016 blssex 15017 neibl 15078 metrest 15093 xmettx 15097 tgioo 15141 tgqioo 15142 limcimolemlt 15251 recnprss 15274 dvmptfsum 15312 lpvtx 15790 bj-om 16072 bj-2inf 16073 bj-nntrans 16086 bj-omtrans 16091 subctctexmid 16139 domomsubct 16140 pw1nct 16142 |
| Copyright terms: Public domain | W3C validator |