| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1 | Unicode version | ||
| Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3199 |
. 2
| |
| 2 | sstr2 3191 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | sstr2 3191 |
. . . 4
| |
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | 3, 5 | impbid 129 |
. 2
|
| 7 | 1, 6 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseq12 3209 sseq1i 3210 sseq1d 3213 nssne2 3243 sbss 3559 pwjust 3607 elpw 3612 elpwg 3614 sssnr 3784 ssprr 3787 sstpr 3788 unimax 3874 trss 4141 elssabg 4182 bnd2 4207 exmidexmid 4230 exmidsssn 4236 exmidsssnc 4237 exmid1stab 4242 mss 4260 exss 4261 frforeq2 4381 ordtri2orexmid 4560 ontr2exmid 4562 onsucsssucexmid 4564 reg2exmidlema 4571 sucprcreg 4586 ordtri2or2exmid 4608 ontri2orexmidim 4609 onintexmid 4610 tfis 4620 tfisi 4624 elomssom 4642 nnregexmid 4658 releq 4746 xpsspw 4776 iss 4993 relcnvtr 5190 iotass 5237 fununi 5327 funcnvuni 5328 funimaexglem 5342 ffoss 5539 ssimaex 5625 tfrlem1 6375 el2oss1o 6510 nnsucsssuc 6559 qsss 6662 phpm 6935 ssfiexmid 6946 findcard2d 6961 findcard2sd 6962 diffifi 6964 isinfinf 6967 fiintim 7001 fisseneq 7004 fidcenumlemrk 7029 fidcenumlemr 7030 sbthlem2 7033 isbth 7042 ctssdclemr 7187 onntri45 7324 tapeq1 7335 elinp 7558 sup3exmid 9001 zfz1isolem1 10949 zfz1iso 10950 fimaxre2 11409 sumeq1 11537 fsum2d 11617 fsumabs 11647 fsumiun 11659 prodeq1f 11734 fprod2d 11805 exmidunben 12668 ctiunct 12682 ssomct 12687 restsspw 12951 lspval 14022 uniopn 14321 fiinopn 14324 fiinbas 14369 baspartn 14370 eltg2 14373 eltg3 14377 topbas 14387 clsval 14431 neival 14463 neiint 14465 neipsm 14474 opnneissb 14475 opnssneib 14476 innei 14483 restbasg 14488 cnpdis 14562 txbas 14578 eltx 14579 neitx 14588 txlm 14599 blssexps 14749 blssex 14750 neibl 14811 metrest 14826 xmettx 14830 tgioo 14874 tgqioo 14875 limcimolemlt 14984 recnprss 15007 dvmptfsum 15045 bj-om 15667 bj-2inf 15668 bj-nntrans 15681 bj-omtrans 15686 subctctexmid 15731 domomsubct 15732 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |