| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq1 | Unicode version | ||
| Description: Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3239 |
. 2
| |
| 2 | sstr2 3231 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | sstr2 3231 |
. . . 4
| |
| 5 | 4 | adantr 276 |
. . 3
|
| 6 | 3, 5 | impbid 129 |
. 2
|
| 7 | 1, 6 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12 3249 sseq1i 3250 sseq1d 3253 nssne2 3283 sbss 3599 pwjust 3650 elpw 3655 elpwg 3657 sssnr 3830 ssprr 3833 sstpr 3834 unimax 3921 trss 4190 elssabg 4231 bnd2 4256 exmidexmid 4279 exmidsssn 4285 exmidsssnc 4286 exmid1stab 4291 mss 4311 exss 4312 frforeq2 4435 ordtri2orexmid 4614 ontr2exmid 4616 onsucsssucexmid 4618 reg2exmidlema 4625 sucprcreg 4640 ordtri2or2exmid 4662 ontri2orexmidim 4663 onintexmid 4664 tfis 4674 tfisi 4678 elomssom 4696 nnregexmid 4712 releq 4800 xpsspw 4830 iss 5050 relcnvtr 5247 iotass 5295 fununi 5388 funcnvuni 5389 funimaexglem 5403 ffoss 5603 ssimaex 5694 tfrlem1 6452 el2oss1o 6587 nnsucsssuc 6636 qsss 6739 phpm 7023 ssfiexmid 7034 findcard2d 7049 findcard2sd 7050 diffifi 7052 isinfinf 7055 fiintim 7089 fisseneq 7092 fidcenumlemrk 7117 fidcenumlemr 7118 sbthlem2 7121 isbth 7130 ctssdclemr 7275 onntri45 7422 tapeq1 7434 elinp 7657 sup3exmid 9100 zfz1isolem1 11057 zfz1iso 11058 fimaxre2 11733 sumeq1 11861 fsum2d 11941 fsumabs 11971 fsumiun 11983 prodeq1f 12058 fprod2d 12129 exmidunben 12992 ctiunct 13006 ssomct 13011 restsspw 13277 lspval 14348 uniopn 14669 fiinopn 14672 fiinbas 14717 baspartn 14718 eltg2 14721 eltg3 14725 topbas 14735 clsval 14779 neival 14811 neiint 14813 neipsm 14822 opnneissb 14823 opnssneib 14824 innei 14831 restbasg 14836 cnpdis 14910 txbas 14926 eltx 14927 neitx 14936 txlm 14947 blssexps 15097 blssex 15098 neibl 15159 metrest 15174 xmettx 15178 tgioo 15222 tgqioo 15223 limcimolemlt 15332 recnprss 15355 dvmptfsum 15393 lpvtx 15873 bj-om 16258 bj-2inf 16259 bj-nntrans 16272 bj-omtrans 16277 subctctexmid 16325 domomsubct 16326 pw1nct 16328 |
| Copyright terms: Public domain | W3C validator |