Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwjust | GIF version |
Description: Soundness justification theorem for df-pw 3568. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
pwjust | ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3170 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | |
2 | 1 | cbvabv 2295 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑧 ∣ 𝑧 ⊆ 𝐴} |
3 | sseq1 3170 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
4 | 3 | cbvabv 2295 | . 2 ⊢ {𝑧 ∣ 𝑧 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} |
5 | 2, 4 | eqtri 2191 | 1 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 {cab 2156 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |