ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwjust GIF version

Theorem pwjust 3618
Description: Soundness justification theorem for df-pw 3619. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pwjust {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem pwjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3217 . . 3 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21cbvabv 2331 . 2 {𝑥𝑥𝐴} = {𝑧𝑧𝐴}
3 sseq1 3217 . . 3 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
43cbvabv 2331 . 2 {𝑧𝑧𝐴} = {𝑦𝑦𝐴}
52, 4eqtri 2227 1 {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  {cab 2192  wss 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3173  df-ss 3180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator