ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwjust GIF version

Theorem pwjust 3426
Description: Soundness justification theorem for df-pw 3427. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pwjust {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem pwjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3045 . . 3 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21cbvabv 2211 . 2 {𝑥𝑥𝐴} = {𝑧𝑧𝐴}
3 sseq1 3045 . . 3 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
43cbvabv 2211 . 2 {𝑧𝑧𝐴} = {𝑦𝑦𝐴}
52, 4eqtri 2108 1 {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1289  {cab 2074  wss 2997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-in 3003  df-ss 3010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator