| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwjust | GIF version | ||
| Description: Soundness justification theorem for df-pw 3631. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| pwjust | ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3227 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | |
| 2 | 1 | cbvabv 2334 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑧 ∣ 𝑧 ⊆ 𝐴} |
| 3 | sseq1 3227 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 4 | 3 | cbvabv 2334 | . 2 ⊢ {𝑧 ∣ 𝑧 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} |
| 5 | 2, 4 | eqtri 2230 | 1 ⊢ {𝑥 ∣ 𝑥 ⊆ 𝐴} = {𝑦 ∣ 𝑦 ⊆ 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 {cab 2195 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |