ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwjust GIF version

Theorem pwjust 3573
Description: Soundness justification theorem for df-pw 3574. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pwjust {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem pwjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3176 . . 3 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21cbvabv 2300 . 2 {𝑥𝑥𝐴} = {𝑧𝑧𝐴}
3 sseq1 3176 . . 3 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
43cbvabv 2300 . 2 {𝑧𝑧𝐴} = {𝑦𝑦𝐴}
52, 4eqtri 2196 1 {𝑥𝑥𝐴} = {𝑦𝑦𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  {cab 2161  wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator