ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw Unicode version

Definition df-pw 3607
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of  _V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if  A is { 3 , 5 , 7 }, then 
~P A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw  |-  ~P A  =  { x  |  x 
C_  A }
Distinct variable group:    x, A

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3  class  A
21cpw 3605 . 2  class  ~P A
3 vx . . . . 5  setvar  x
43cv 1363 . . . 4  class  x
54, 1wss 3157 . . 3  wff  x  C_  A
65, 3cab 2182 . 2  class  { x  |  x  C_  A }
72, 6wceq 1364 1  wff  ~P A  =  { x  |  x 
C_  A }
Colors of variables: wff set class
This definition is referenced by:  pweq  3608  elpw  3611  nfpw  3618  pwss  3621  pw0  3769  snsspw  3794  pwsnss  3833  vpwex  4212  abssexg  4215  iunpw  4515  iotass  5236  mapex  6713  ssenen  6912  tgvalex  12934  bdcpw  15515
  Copyright terms: Public domain W3C validator