ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw Unicode version

Definition df-pw 3651
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of  _V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if  A is { 3 , 5 , 7 }, then 
~P A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw  |-  ~P A  =  { x  |  x 
C_  A }
Distinct variable group:    x, A

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3  class  A
21cpw 3649 . 2  class  ~P A
3 vx . . . . 5  setvar  x
43cv 1394 . . . 4  class  x
54, 1wss 3197 . . 3  wff  x  C_  A
65, 3cab 2215 . 2  class  { x  |  x  C_  A }
72, 6wceq 1395 1  wff  ~P A  =  { x  |  x 
C_  A }
Colors of variables: wff set class
This definition is referenced by:  pweq  3652  elpw  3655  nfpw  3662  pwss  3665  pw0  3815  snsspw  3842  pwsnss  3882  vpwex  4263  abssexg  4266  iunpw  4571  iotass  5296  mapex  6801  ssenen  7012  tgvalex  13296  bdcpw  16232
  Copyright terms: Public domain W3C validator