ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw Unicode version

Definition df-pw 3617
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of  _V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if  A is { 3 , 5 , 7 }, then 
~P A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw  |-  ~P A  =  { x  |  x 
C_  A }
Distinct variable group:    x, A

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3  class  A
21cpw 3615 . 2  class  ~P A
3 vx . . . . 5  setvar  x
43cv 1371 . . . 4  class  x
54, 1wss 3165 . . 3  wff  x  C_  A
65, 3cab 2190 . 2  class  { x  |  x  C_  A }
72, 6wceq 1372 1  wff  ~P A  =  { x  |  x 
C_  A }
Colors of variables: wff set class
This definition is referenced by:  pweq  3618  elpw  3621  nfpw  3628  pwss  3631  pw0  3779  snsspw  3804  pwsnss  3843  vpwex  4222  abssexg  4225  iunpw  4526  iotass  5248  mapex  6740  ssenen  6947  tgvalex  13066  bdcpw  15767
  Copyright terms: Public domain W3C validator