ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw Unicode version

Definition df-pw 3628
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of  _V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if  A is { 3 , 5 , 7 }, then 
~P A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw  |-  ~P A  =  { x  |  x 
C_  A }
Distinct variable group:    x, A

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3  class  A
21cpw 3626 . 2  class  ~P A
3 vx . . . . 5  setvar  x
43cv 1372 . . . 4  class  x
54, 1wss 3174 . . 3  wff  x  C_  A
65, 3cab 2193 . 2  class  { x  |  x  C_  A }
72, 6wceq 1373 1  wff  ~P A  =  { x  |  x 
C_  A }
Colors of variables: wff set class
This definition is referenced by:  pweq  3629  elpw  3632  nfpw  3639  pwss  3642  pw0  3791  snsspw  3818  pwsnss  3858  vpwex  4239  abssexg  4242  iunpw  4545  iotass  5268  mapex  6764  ssenen  6973  tgvalex  13210  bdcpw  16004
  Copyright terms: Public domain W3C validator