ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw Unicode version

Definition df-pw 3618
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of  _V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if  A is { 3 , 5 , 7 }, then 
~P A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw  |-  ~P A  =  { x  |  x 
C_  A }
Distinct variable group:    x, A

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3  class  A
21cpw 3616 . 2  class  ~P A
3 vx . . . . 5  setvar  x
43cv 1372 . . . 4  class  x
54, 1wss 3166 . . 3  wff  x  C_  A
65, 3cab 2191 . 2  class  { x  |  x  C_  A }
72, 6wceq 1373 1  wff  ~P A  =  { x  |  x 
C_  A }
Colors of variables: wff set class
This definition is referenced by:  pweq  3619  elpw  3622  nfpw  3629  pwss  3632  pw0  3780  snsspw  3805  pwsnss  3844  vpwex  4223  abssexg  4226  iunpw  4527  iotass  5249  mapex  6741  ssenen  6948  tgvalex  13095  bdcpw  15805
  Copyright terms: Public domain W3C validator