ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw Unicode version

Definition df-pw 3604
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of  _V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if  A is { 3 , 5 , 7 }, then 
~P A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw  |-  ~P A  =  { x  |  x 
C_  A }
Distinct variable group:    x, A

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3  class  A
21cpw 3602 . 2  class  ~P A
3 vx . . . . 5  setvar  x
43cv 1363 . . . 4  class  x
54, 1wss 3154 . . 3  wff  x  C_  A
65, 3cab 2179 . 2  class  { x  |  x  C_  A }
72, 6wceq 1364 1  wff  ~P A  =  { x  |  x 
C_  A }
Colors of variables: wff set class
This definition is referenced by:  pweq  3605  elpw  3608  nfpw  3615  pwss  3618  pw0  3766  snsspw  3791  pwsnss  3830  vpwex  4209  abssexg  4212  iunpw  4512  iotass  5233  mapex  6710  ssenen  6909  tgvalex  12877  bdcpw  15431
  Copyright terms: Public domain W3C validator