ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw Unicode version

Definition df-pw 3603
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of  _V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if  A is { 3 , 5 , 7 }, then 
~P A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw  |-  ~P A  =  { x  |  x 
C_  A }
Distinct variable group:    x, A

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3  class  A
21cpw 3601 . 2  class  ~P A
3 vx . . . . 5  setvar  x
43cv 1363 . . . 4  class  x
54, 1wss 3153 . . 3  wff  x  C_  A
65, 3cab 2179 . 2  class  { x  |  x  C_  A }
72, 6wceq 1364 1  wff  ~P A  =  { x  |  x 
C_  A }
Colors of variables: wff set class
This definition is referenced by:  pweq  3604  elpw  3607  nfpw  3614  pwss  3617  pw0  3765  snsspw  3790  pwsnss  3829  vpwex  4208  abssexg  4211  iunpw  4511  iotass  5232  mapex  6708  ssenen  6907  tgvalex  12874  bdcpw  15361
  Copyright terms: Public domain W3C validator