Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimivw | Unicode version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
ralrimivw.1 |
Ref | Expression |
---|---|
ralrimivw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivw.1 | . . 3 | |
2 | 1 | a1d 22 | . 2 |
3 | 2 | ralrimiv 2542 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 |
This theorem is referenced by: r19.27v 2597 r19.28v 2598 exse 4319 sosng 4682 dmxpm 4829 exse2 4983 funco 5236 acexmidlemph 5843 mpoeq12 5910 xpexgALT 6109 mpoexg 6187 rdgtfr 6350 rdgruledefgg 6351 rdgivallem 6357 frecabex 6374 frectfr 6376 omfnex 6425 oeiv 6432 uniqs 6567 sbthlemi5 6934 sbthlemi6 6935 updjud 7055 exmidfodomrlemim 7165 exmidaclem 7172 cc4f 7218 genpdisj 7472 ltexprlemloc 7556 recexprlemloc 7580 cauappcvgprlemrnd 7599 cauappcvgprlemdisj 7600 caucvgprlemrnd 7622 caucvgprlemdisj 7623 caucvgprprlemrnd 7650 caucvgprprlemdisj 7651 suplocexpr 7674 recan 11060 climconst 11240 sumeq2ad 11319 dvdsext 11802 zsupssdc 11896 pc11 12271 neif 12894 lmconst 12969 cndis 12994 2sqlem10 13714 |
Copyright terms: Public domain | W3C validator |