Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimivw | Unicode version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
ralrimivw.1 |
Ref | Expression |
---|---|
ralrimivw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivw.1 | . . 3 | |
2 | 1 | a1d 22 | . 2 |
3 | 2 | ralrimiv 2542 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 |
This theorem is referenced by: r19.27v 2597 r19.28v 2598 exse 4321 sosng 4684 dmxpm 4831 exse2 4985 funco 5238 acexmidlemph 5846 mpoeq12 5913 xpexgALT 6112 mpoexg 6190 rdgtfr 6353 rdgruledefgg 6354 rdgivallem 6360 frecabex 6377 frectfr 6379 omfnex 6428 oeiv 6435 uniqs 6571 sbthlemi5 6938 sbthlemi6 6939 updjud 7059 exmidfodomrlemim 7178 exmidaclem 7185 cc4f 7231 genpdisj 7485 ltexprlemloc 7569 recexprlemloc 7593 cauappcvgprlemrnd 7612 cauappcvgprlemdisj 7613 caucvgprlemrnd 7635 caucvgprlemdisj 7636 caucvgprprlemrnd 7663 caucvgprprlemdisj 7664 suplocexpr 7687 recan 11073 climconst 11253 sumeq2ad 11332 dvdsext 11815 zsupssdc 11909 pc11 12284 grpinvfng 12747 neif 12935 lmconst 13010 cndis 13035 2sqlem10 13755 |
Copyright terms: Public domain | W3C validator |