Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrimivw | Unicode version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
ralrimivw.1 |
Ref | Expression |
---|---|
ralrimivw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivw.1 | . . 3 | |
2 | 1 | a1d 22 | . 2 |
3 | 2 | ralrimiv 2537 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 wral 2443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2448 |
This theorem is referenced by: r19.27v 2592 r19.28v 2593 exse 4313 sosng 4676 dmxpm 4823 exse2 4977 funco 5227 acexmidlemph 5834 mpoeq12 5898 xpexgALT 6098 mpoexg 6176 rdgtfr 6338 rdgruledefgg 6339 rdgivallem 6345 frecabex 6362 frectfr 6364 omfnex 6413 oeiv 6420 uniqs 6555 sbthlemi5 6922 sbthlemi6 6923 updjud 7043 exmidfodomrlemim 7153 exmidaclem 7160 cc4f 7206 genpdisj 7460 ltexprlemloc 7544 recexprlemloc 7568 cauappcvgprlemrnd 7587 cauappcvgprlemdisj 7588 caucvgprlemrnd 7610 caucvgprlemdisj 7611 caucvgprprlemrnd 7638 caucvgprprlemdisj 7639 suplocexpr 7662 recan 11047 climconst 11227 sumeq2ad 11306 dvdsext 11789 zsupssdc 11883 pc11 12258 neif 12741 lmconst 12816 cndis 12841 2sqlem10 13561 |
Copyright terms: Public domain | W3C validator |