![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrimivw | Unicode version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
ralrimivw.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ralrimivw |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivw.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1d 22 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | ralrimiv 2566 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: r19.27v 2621 r19.28v 2622 exse 4367 sosng 4732 dmxpm 4882 exse2 5039 funco 5294 acexmidlemph 5911 mpoeq12 5978 xpexgALT 6185 mpoexg 6264 rdgtfr 6427 rdgruledefgg 6428 rdgivallem 6434 frecabex 6451 frectfr 6453 omfnex 6502 oeiv 6509 uniqs 6647 exmidpw2en 6968 sbthlemi5 7020 sbthlemi6 7021 updjud 7141 exmidfodomrlemim 7261 exmidaclem 7268 exmidapne 7320 cc4f 7329 genpdisj 7583 ltexprlemloc 7667 recexprlemloc 7691 cauappcvgprlemrnd 7710 cauappcvgprlemdisj 7711 caucvgprlemrnd 7733 caucvgprlemdisj 7734 caucvgprprlemrnd 7761 caucvgprprlemdisj 7762 suplocexpr 7785 nninfinf 10514 recan 11253 climconst 11433 sumeq2ad 11512 dvdsext 11997 zsupssdc 12091 pc11 12469 ptex 12875 prdsex 12880 imasex 12888 imasbas 12890 imasplusg 12891 imasmulr 12892 imasaddfnlemg 12897 imasaddvallemg 12898 quslem 12907 grpinvfng 13116 scaffng 13805 neif 14309 lmconst 14384 cndis 14409 plyval 14878 2sqlem10 15212 |
Copyright terms: Public domain | W3C validator |