| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralrimivw | Unicode version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ralrimivw.1 |
|
| Ref | Expression |
|---|---|
| ralrimivw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivw.1 |
. . 3
| |
| 2 | 1 | a1d 22 |
. 2
|
| 3 | 2 | ralrimiv 2602 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 |
| This theorem is referenced by: r19.27v 2658 r19.28v 2659 exse 4427 sosng 4792 dmxpm 4944 exse2 5102 funco 5358 acexmidlemph 5994 mpoeq12 6064 xpexgALT 6278 mpoexg 6357 rdgtfr 6520 rdgruledefgg 6521 rdgivallem 6527 frecabex 6544 frectfr 6546 omfnex 6595 oeiv 6602 uniqs 6740 exmidpw2en 7074 sbthlemi5 7128 sbthlemi6 7129 updjud 7249 exmidfodomrlemim 7379 exmidaclem 7390 exmidapne 7446 cc4f 7455 genpdisj 7710 ltexprlemloc 7794 recexprlemloc 7818 cauappcvgprlemrnd 7837 cauappcvgprlemdisj 7838 caucvgprlemrnd 7860 caucvgprlemdisj 7861 caucvgprprlemrnd 7888 caucvgprprlemdisj 7889 suplocexpr 7912 zsupssdc 10458 nninfinf 10665 recan 11620 climconst 11801 sumeq2ad 11880 dvdsext 12366 pc11 12854 ptex 13297 prdsex 13302 prdsval 13306 prdsbaslemss 13307 prdsbas 13309 imasex 13338 imasbas 13340 imasplusg 13341 imasmulr 13342 imasaddfnlemg 13347 imasaddvallemg 13348 quslem 13357 grpinvfng 13577 scaffng 14273 neif 14815 lmconst 14890 cndis 14915 plyval 15406 lgsquadlem2 15757 2sqlem10 15804 uspgr2wlkeq2 16077 |
| Copyright terms: Public domain | W3C validator |