ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21t GIF version

Theorem r19.21t 2532
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers (closed theorem version). (Contributed by NM, 1-Mar-2008.)
Assertion
Ref Expression
r19.21t (Ⅎ𝑥𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓)))

Proof of Theorem r19.21t
StepHypRef Expression
1 bi2.04 247 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ (𝜑 → (𝑥𝐴𝜓)))
21albii 1450 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜓)))
3 19.21t 1562 . . 3 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → (𝑥𝐴𝜓)) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓))))
42, 3syl5bb 191 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓))))
5 df-ral 2440 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
6 df-ral 2440 . . 3 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
76imbi2i 225 . 2 ((𝜑 → ∀𝑥𝐴 𝜓) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓)))
84, 5, 73bitr4g 222 1 (Ⅎ𝑥𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1333  wnf 1440  wcel 2128  wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-4 1490  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-ral 2440
This theorem is referenced by:  r19.21  2533
  Copyright terms: Public domain W3C validator