ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.28av Unicode version

Theorem r19.28av 2606
Description: Restricted version of one direction of Theorem 19.28 of [Margaris] p. 90. (The other direction doesn't hold when  A is empty.) (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.28av  |-  ( (
ph  /\  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  /\  ps )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem r19.28av
StepHypRef Expression
1 r19.27av 2605 . 2  |-  ( ( A. x  e.  A  ps  /\  ph )  ->  A. x  e.  A  ( ps  /\  ph )
)
2 ancom 264 . 2  |-  ( (
ph  /\  A. x  e.  A  ps )  <->  ( A. x  e.  A  ps  /\  ph ) )
3 ancom 264 . . 3  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
43ralbii 2476 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  A. x  e.  A  ( ps  /\ 
ph ) )
51, 2, 43imtr4i 200 1  |-  ( (
ph  /\  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-ral 2453
This theorem is referenced by:  rr19.28v  2870  fununi  5266
  Copyright terms: Public domain W3C validator