Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rr19.28v | Unicode version |
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.) |
Ref | Expression |
---|---|
rr19.28v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . 6 | |
2 | 1 | ralimi 2533 | . . . . 5 |
3 | biidd 171 | . . . . . 6 | |
4 | 3 | rspcv 2830 | . . . . 5 |
5 | 2, 4 | syl5 32 | . . . 4 |
6 | simpr 109 | . . . . . 6 | |
7 | 6 | ralimi 2533 | . . . . 5 |
8 | 7 | a1i 9 | . . . 4 |
9 | 5, 8 | jcad 305 | . . 3 |
10 | 9 | ralimia 2531 | . 2 |
11 | r19.28av 2606 | . . 3 | |
12 | 11 | ralimi 2533 | . 2 |
13 | 10, 12 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2141 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |