ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rr19.28v Unicode version

Theorem rr19.28v 2866
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 29-Oct-2012.)
Assertion
Ref Expression
rr19.28v  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  A. x  e.  A  ( ph  /\ 
A. y  e.  A  ps ) )
Distinct variable groups:    y, A    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    A( x)

Proof of Theorem rr19.28v
StepHypRef Expression
1 simpl 108 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
21ralimi 2529 . . . . 5  |-  ( A. y  e.  A  ( ph  /\  ps )  ->  A. y  e.  A  ph )
3 biidd 171 . . . . . 6  |-  ( y  =  x  ->  ( ph 
<-> 
ph ) )
43rspcv 2826 . . . . 5  |-  ( x  e.  A  ->  ( A. y  e.  A  ph 
->  ph ) )
52, 4syl5 32 . . . 4  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ph  /\  ps )  ->  ph ) )
6 simpr 109 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ps )
76ralimi 2529 . . . . 5  |-  ( A. y  e.  A  ( ph  /\  ps )  ->  A. y  e.  A  ps )
87a1i 9 . . . 4  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ph  /\  ps )  ->  A. y  e.  A  ps ) )
95, 8jcad 305 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ph  /\  ps )  ->  ( ph  /\  A. y  e.  A  ps ) ) )
109ralimia 2527 . 2  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  ->  A. x  e.  A  ( ph  /\  A. y  e.  A  ps )
)
11 r19.28av 2602 . . 3  |-  ( (
ph  /\  A. y  e.  A  ps )  ->  A. y  e.  A  ( ph  /\  ps )
)
1211ralimi 2529 . 2  |-  ( A. x  e.  A  ( ph  /\  A. y  e.  A  ps )  ->  A. x  e.  A  A. y  e.  A  ( ph  /\  ps )
)
1310, 12impbii 125 1  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  A. x  e.  A  ( ph  /\ 
A. y  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator