ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinexgm Unicode version

Theorem iinexgm 4047
Description: The existence of an indexed union.  x is normally a free-variable parameter in  B, which should be read  B ( x ). (Contributed by Jim Kingdon, 28-Aug-2018.)
Assertion
Ref Expression
iinexgm  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  B  e.  C )  ->  |^|_ x  e.  A  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem iinexgm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfiin2g 3814 . . 3  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
21adantl 273 . 2  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  B  e.  C )  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
3 elisset 2672 . . . . . . . . . 10  |-  ( B  e.  C  ->  E. y 
y  =  B )
43rgenw 2462 . . . . . . . . 9  |-  A. x  e.  A  ( B  e.  C  ->  E. y 
y  =  B )
5 r19.2m 3417 . . . . . . . . 9  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  ( B  e.  C  ->  E. y 
y  =  B ) )  ->  E. x  e.  A  ( B  e.  C  ->  E. y 
y  =  B ) )
64, 5mpan2 419 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  E. x  e.  A  ( B  e.  C  ->  E. y  y  =  B ) )
7 r19.35-1 2556 . . . . . . . 8  |-  ( E. x  e.  A  ( B  e.  C  ->  E. y  y  =  B )  ->  ( A. x  e.  A  B  e.  C  ->  E. x  e.  A  E. y  y  =  B
) )
86, 7syl 14 . . . . . . 7  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  B  e.  C  ->  E. x  e.  A  E. y  y  =  B ) )
98imp 123 . . . . . 6  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  B  e.  C )  ->  E. x  e.  A  E. y 
y  =  B )
10 rexcom4 2681 . . . . . 6  |-  ( E. x  e.  A  E. y  y  =  B  <->  E. y E. x  e.  A  y  =  B )
119, 10sylib 121 . . . . 5  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  B  e.  C )  ->  E. y E. x  e.  A  y  =  B )
12 abid 2103 . . . . . 6  |-  ( y  e.  { y  |  E. x  e.  A  y  =  B }  <->  E. x  e.  A  y  =  B )
1312exbii 1567 . . . . 5  |-  ( E. y  y  e.  {
y  |  E. x  e.  A  y  =  B }  <->  E. y E. x  e.  A  y  =  B )
1411, 13sylibr 133 . . . 4  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  B  e.  C )  ->  E. y 
y  e.  { y  |  E. x  e.  A  y  =  B } )
15 nfv 1491 . . . . 5  |-  F/ z  y  e.  { y  |  E. x  e.  A  y  =  B }
16 nfsab1 2105 . . . . 5  |-  F/ y  z  e.  { y  |  E. x  e.  A  y  =  B }
17 eleq1w 2176 . . . . 5  |-  ( y  =  z  ->  (
y  e.  { y  |  E. x  e.  A  y  =  B }  <->  z  e.  {
y  |  E. x  e.  A  y  =  B } ) )
1815, 16, 17cbvex 1712 . . . 4  |-  ( E. y  y  e.  {
y  |  E. x  e.  A  y  =  B }  <->  E. z  z  e. 
{ y  |  E. x  e.  A  y  =  B } )
1914, 18sylib 121 . . 3  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  B  e.  C )  ->  E. z 
z  e.  { y  |  E. x  e.  A  y  =  B } )
20 inteximm 4042 . . 3  |-  ( E. z  z  e.  {
y  |  E. x  e.  A  y  =  B }  ->  |^| { y  |  E. x  e.  A  y  =  B }  e.  _V )
2119, 20syl 14 . 2  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  B  e.  C )  ->  |^| { y  |  E. x  e.  A  y  =  B }  e.  _V )
222, 21eqeltrd 2192 1  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  B  e.  C )  ->  |^|_ x  e.  A  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314   E.wex 1451    e. wcel 1463   {cab 2101   A.wral 2391   E.wrex 2392   _Vcvv 2658   |^|cint 3739   |^|_ciin 3782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-in 3045  df-ss 3052  df-int 3740  df-iin 3784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator