Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bndndx | Unicode version |
Description: A bounded real sequence is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.) |
Ref | Expression |
---|---|
bndndx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arch 9081 | . . . 4 | |
2 | nnre 8834 | . . . . . 6 | |
3 | lelttr 7959 | . . . . . . . . . . 11 | |
4 | ltle 7958 | . . . . . . . . . . . 12 | |
5 | 4 | 3adant2 1001 | . . . . . . . . . . 11 |
6 | 3, 5 | syld 45 | . . . . . . . . . 10 |
7 | 6 | exp5o 1208 | . . . . . . . . 9 |
8 | 7 | com3l 81 | . . . . . . . 8 |
9 | 8 | imp4b 348 | . . . . . . 7 |
10 | 9 | com23 78 | . . . . . 6 |
11 | 2, 10 | sylan2 284 | . . . . 5 |
12 | 11 | reximdva 2559 | . . . 4 |
13 | 1, 12 | mpd 13 | . . 3 |
14 | r19.35-1 2607 | . . 3 | |
15 | 13, 14 | syl 14 | . 2 |
16 | 15 | rexlimiv 2568 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wcel 2128 wral 2435 wrex 2436 class class class wbr 3965 cr 7725 clt 7906 cle 7907 cn 8827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1re 7820 ax-addrcl 7823 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-arch 7845 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-xp 4591 df-cnv 4593 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-inn 8828 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |