ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bndndx Unicode version

Theorem bndndx 9248
Description: A bounded real sequence  A (
k ) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
Assertion
Ref Expression
bndndx  |-  ( E. x  e.  RR  A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k
)
Distinct variable groups:    x, A    x, k
Allowed substitution hint:    A( k)

Proof of Theorem bndndx
StepHypRef Expression
1 arch 9246 . . . 4  |-  ( x  e.  RR  ->  E. k  e.  NN  x  <  k
)
2 nnre 8997 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  RR )
3 lelttr 8115 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  RR )  ->  (
( A  <_  x  /\  x  <  k )  ->  A  <  k
) )
4 ltle 8114 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  ( A  <  k  ->  A  <_  k )
)
543adant2 1018 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  RR )  ->  ( A  <  k  ->  A  <_  k ) )
63, 5syld 45 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  RR )  ->  (
( A  <_  x  /\  x  <  k )  ->  A  <_  k
) )
76exp5o 1228 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
x  e.  RR  ->  ( k  e.  RR  ->  ( A  <_  x  ->  ( x  <  k  ->  A  <_  k ) ) ) ) )
87com3l 81 . . . . . . . 8  |-  ( x  e.  RR  ->  (
k  e.  RR  ->  ( A  e.  RR  ->  ( A  <_  x  ->  ( x  <  k  ->  A  <_  k ) ) ) ) )
98imp4b 350 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( ( A  e.  RR  /\  A  <_  x )  ->  (
x  <  k  ->  A  <_  k ) ) )
109com23 78 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( x  <  k  ->  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) ) )
112, 10sylan2 286 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( x  <  k  ->  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) ) )
1211reximdva 2599 . . . 4  |-  ( x  e.  RR  ->  ( E. k  e.  NN  x  <  k  ->  E. k  e.  NN  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) ) )
131, 12mpd 13 . . 3  |-  ( x  e.  RR  ->  E. k  e.  NN  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) )
14 r19.35-1 2647 . . 3  |-  ( E. k  e.  NN  (
( A  e.  RR  /\  A  <_  x )  ->  A  <_  k )  ->  ( A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k
) )
1513, 14syl 14 . 2  |-  ( x  e.  RR  ->  ( A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k ) )
1615rexlimiv 2608 1  |-  ( E. x  e.  RR  A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4033   RRcr 7878    < clt 8061    <_ cle 8062   NNcn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-inn 8991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator