| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iinerm | Unicode version | ||
| Description: The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| iinerm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2257 |
. . . 4
| |
| 2 | 1 | cbvexv 1933 |
. . 3
|
| 3 | eleq1w 2257 |
. . . 4
| |
| 4 | 3 | cbvexv 1933 |
. . 3
|
| 5 | 2, 4 | bitri 184 |
. 2
|
| 6 | r19.2m 3538 |
. . . . 5
| |
| 7 | errel 6610 |
. . . . . . 7
| |
| 8 | df-rel 4671 |
. . . . . . 7
| |
| 9 | 7, 8 | sylib 122 |
. . . . . 6
|
| 10 | 9 | reximi 2594 |
. . . . 5
|
| 11 | iinss 3969 |
. . . . 5
| |
| 12 | 6, 10, 11 | 3syl 17 |
. . . 4
|
| 13 | df-rel 4671 |
. . . 4
| |
| 14 | 12, 13 | sylibr 134 |
. . 3
|
| 15 | id 19 |
. . . . . . . . . 10
| |
| 16 | 15 | ersymb 6615 |
. . . . . . . . 9
|
| 17 | 16 | biimpd 144 |
. . . . . . . 8
|
| 18 | df-br 4035 |
. . . . . . . 8
| |
| 19 | df-br 4035 |
. . . . . . . 8
| |
| 20 | 17, 18, 19 | 3imtr3g 204 |
. . . . . . 7
|
| 21 | 20 | ral2imi 2562 |
. . . . . 6
|
| 22 | 21 | adantl 277 |
. . . . 5
|
| 23 | df-br 4035 |
. . . . . 6
| |
| 24 | vex 2766 |
. . . . . . . 8
| |
| 25 | vex 2766 |
. . . . . . . 8
| |
| 26 | 24, 25 | opex 4263 |
. . . . . . 7
|
| 27 | eliin 3922 |
. . . . . . 7
| |
| 28 | 26, 27 | ax-mp 5 |
. . . . . 6
|
| 29 | 23, 28 | bitri 184 |
. . . . 5
|
| 30 | df-br 4035 |
. . . . . 6
| |
| 31 | 25, 24 | opex 4263 |
. . . . . . 7
|
| 32 | eliin 3922 |
. . . . . . 7
| |
| 33 | 31, 32 | ax-mp 5 |
. . . . . 6
|
| 34 | 30, 33 | bitri 184 |
. . . . 5
|
| 35 | 22, 29, 34 | 3imtr4g 205 |
. . . 4
|
| 36 | 35 | imp 124 |
. . 3
|
| 37 | r19.26 2623 |
. . . . . 6
| |
| 38 | 15 | ertr 6616 |
. . . . . . . . 9
|
| 39 | df-br 4035 |
. . . . . . . . . 10
| |
| 40 | 18, 39 | anbi12i 460 |
. . . . . . . . 9
|
| 41 | df-br 4035 |
. . . . . . . . 9
| |
| 42 | 38, 40, 41 | 3imtr3g 204 |
. . . . . . . 8
|
| 43 | 42 | ral2imi 2562 |
. . . . . . 7
|
| 44 | 43 | adantl 277 |
. . . . . 6
|
| 45 | 37, 44 | biimtrrid 153 |
. . . . 5
|
| 46 | df-br 4035 |
. . . . . . 7
| |
| 47 | vex 2766 |
. . . . . . . . 9
| |
| 48 | 25, 47 | opex 4263 |
. . . . . . . 8
|
| 49 | eliin 3922 |
. . . . . . . 8
| |
| 50 | 48, 49 | ax-mp 5 |
. . . . . . 7
|
| 51 | 46, 50 | bitri 184 |
. . . . . 6
|
| 52 | 29, 51 | anbi12i 460 |
. . . . 5
|
| 53 | df-br 4035 |
. . . . . 6
| |
| 54 | 24, 47 | opex 4263 |
. . . . . . 7
|
| 55 | eliin 3922 |
. . . . . . 7
| |
| 56 | 54, 55 | ax-mp 5 |
. . . . . 6
|
| 57 | 53, 56 | bitri 184 |
. . . . 5
|
| 58 | 45, 52, 57 | 3imtr4g 205 |
. . . 4
|
| 59 | 58 | imp 124 |
. . 3
|
| 60 | simpl 109 |
. . . . . . . . . . 11
| |
| 61 | simpr 110 |
. . . . . . . . . . 11
| |
| 62 | 60, 61 | erref 6621 |
. . . . . . . . . 10
|
| 63 | df-br 4035 |
. . . . . . . . . 10
| |
| 64 | 62, 63 | sylib 122 |
. . . . . . . . 9
|
| 65 | 64 | expcom 116 |
. . . . . . . 8
|
| 66 | 65 | ralimdv 2565 |
. . . . . . 7
|
| 67 | 66 | com12 30 |
. . . . . 6
|
| 68 | 67 | adantl 277 |
. . . . 5
|
| 69 | r19.26 2623 |
. . . . . . 7
| |
| 70 | r19.2m 3538 |
. . . . . . . . 9
| |
| 71 | 24, 24 | opeldm 4870 |
. . . . . . . . . . 11
|
| 72 | erdm 6611 |
. . . . . . . . . . . . 13
| |
| 73 | 72 | eleq2d 2266 |
. . . . . . . . . . . 12
|
| 74 | 73 | biimpa 296 |
. . . . . . . . . . 11
|
| 75 | 71, 74 | sylan2 286 |
. . . . . . . . . 10
|
| 76 | 75 | rexlimivw 2610 |
. . . . . . . . 9
|
| 77 | 70, 76 | syl 14 |
. . . . . . . 8
|
| 78 | 77 | ex 115 |
. . . . . . 7
|
| 79 | 69, 78 | biimtrrid 153 |
. . . . . 6
|
| 80 | 79 | expdimp 259 |
. . . . 5
|
| 81 | 68, 80 | impbid 129 |
. . . 4
|
| 82 | df-br 4035 |
. . . . 5
| |
| 83 | 24, 24 | opex 4263 |
. . . . . 6
|
| 84 | eliin 3922 |
. . . . . 6
| |
| 85 | 83, 84 | ax-mp 5 |
. . . . 5
|
| 86 | 82, 85 | bitri 184 |
. . . 4
|
| 87 | 81, 86 | bitr4di 198 |
. . 3
|
| 88 | 14, 36, 59, 87 | iserd 6627 |
. 2
|
| 89 | 5, 88 | sylanbr 285 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-iin 3920 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-er 6601 |
| This theorem is referenced by: riinerm 6676 |
| Copyright terms: Public domain | W3C validator |