Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iinerm | Unicode version |
Description: The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
iinerm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2227 | . . . 4 | |
2 | 1 | cbvexv 1906 | . . 3 |
3 | eleq1w 2227 | . . . 4 | |
4 | 3 | cbvexv 1906 | . . 3 |
5 | 2, 4 | bitri 183 | . 2 |
6 | r19.2m 3495 | . . . . 5 | |
7 | errel 6510 | . . . . . . 7 | |
8 | df-rel 4611 | . . . . . . 7 | |
9 | 7, 8 | sylib 121 | . . . . . 6 |
10 | 9 | reximi 2563 | . . . . 5 |
11 | iinss 3917 | . . . . 5 | |
12 | 6, 10, 11 | 3syl 17 | . . . 4 |
13 | df-rel 4611 | . . . 4 | |
14 | 12, 13 | sylibr 133 | . . 3 |
15 | id 19 | . . . . . . . . . 10 | |
16 | 15 | ersymb 6515 | . . . . . . . . 9 |
17 | 16 | biimpd 143 | . . . . . . . 8 |
18 | df-br 3983 | . . . . . . . 8 | |
19 | df-br 3983 | . . . . . . . 8 | |
20 | 17, 18, 19 | 3imtr3g 203 | . . . . . . 7 |
21 | 20 | ral2imi 2531 | . . . . . 6 |
22 | 21 | adantl 275 | . . . . 5 |
23 | df-br 3983 | . . . . . 6 | |
24 | vex 2729 | . . . . . . . 8 | |
25 | vex 2729 | . . . . . . . 8 | |
26 | 24, 25 | opex 4207 | . . . . . . 7 |
27 | eliin 3871 | . . . . . . 7 | |
28 | 26, 27 | ax-mp 5 | . . . . . 6 |
29 | 23, 28 | bitri 183 | . . . . 5 |
30 | df-br 3983 | . . . . . 6 | |
31 | 25, 24 | opex 4207 | . . . . . . 7 |
32 | eliin 3871 | . . . . . . 7 | |
33 | 31, 32 | ax-mp 5 | . . . . . 6 |
34 | 30, 33 | bitri 183 | . . . . 5 |
35 | 22, 29, 34 | 3imtr4g 204 | . . . 4 |
36 | 35 | imp 123 | . . 3 |
37 | r19.26 2592 | . . . . . 6 | |
38 | 15 | ertr 6516 | . . . . . . . . 9 |
39 | df-br 3983 | . . . . . . . . . 10 | |
40 | 18, 39 | anbi12i 456 | . . . . . . . . 9 |
41 | df-br 3983 | . . . . . . . . 9 | |
42 | 38, 40, 41 | 3imtr3g 203 | . . . . . . . 8 |
43 | 42 | ral2imi 2531 | . . . . . . 7 |
44 | 43 | adantl 275 | . . . . . 6 |
45 | 37, 44 | syl5bir 152 | . . . . 5 |
46 | df-br 3983 | . . . . . . 7 | |
47 | vex 2729 | . . . . . . . . 9 | |
48 | 25, 47 | opex 4207 | . . . . . . . 8 |
49 | eliin 3871 | . . . . . . . 8 | |
50 | 48, 49 | ax-mp 5 | . . . . . . 7 |
51 | 46, 50 | bitri 183 | . . . . . 6 |
52 | 29, 51 | anbi12i 456 | . . . . 5 |
53 | df-br 3983 | . . . . . 6 | |
54 | 24, 47 | opex 4207 | . . . . . . 7 |
55 | eliin 3871 | . . . . . . 7 | |
56 | 54, 55 | ax-mp 5 | . . . . . 6 |
57 | 53, 56 | bitri 183 | . . . . 5 |
58 | 45, 52, 57 | 3imtr4g 204 | . . . 4 |
59 | 58 | imp 123 | . . 3 |
60 | simpl 108 | . . . . . . . . . . 11 | |
61 | simpr 109 | . . . . . . . . . . 11 | |
62 | 60, 61 | erref 6521 | . . . . . . . . . 10 |
63 | df-br 3983 | . . . . . . . . . 10 | |
64 | 62, 63 | sylib 121 | . . . . . . . . 9 |
65 | 64 | expcom 115 | . . . . . . . 8 |
66 | 65 | ralimdv 2534 | . . . . . . 7 |
67 | 66 | com12 30 | . . . . . 6 |
68 | 67 | adantl 275 | . . . . 5 |
69 | r19.26 2592 | . . . . . . 7 | |
70 | r19.2m 3495 | . . . . . . . . 9 | |
71 | 24, 24 | opeldm 4807 | . . . . . . . . . . 11 |
72 | erdm 6511 | . . . . . . . . . . . . 13 | |
73 | 72 | eleq2d 2236 | . . . . . . . . . . . 12 |
74 | 73 | biimpa 294 | . . . . . . . . . . 11 |
75 | 71, 74 | sylan2 284 | . . . . . . . . . 10 |
76 | 75 | rexlimivw 2579 | . . . . . . . . 9 |
77 | 70, 76 | syl 14 | . . . . . . . 8 |
78 | 77 | ex 114 | . . . . . . 7 |
79 | 69, 78 | syl5bir 152 | . . . . . 6 |
80 | 79 | expdimp 257 | . . . . 5 |
81 | 68, 80 | impbid 128 | . . . 4 |
82 | df-br 3983 | . . . . 5 | |
83 | 24, 24 | opex 4207 | . . . . . 6 |
84 | eliin 3871 | . . . . . 6 | |
85 | 83, 84 | ax-mp 5 | . . . . 5 |
86 | 82, 85 | bitri 183 | . . . 4 |
87 | 81, 86 | bitr4di 197 | . . 3 |
88 | 14, 36, 59, 87 | iserd 6527 | . 2 |
89 | 5, 88 | sylanbr 283 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1480 wcel 2136 wral 2444 wrex 2445 cvv 2726 wss 3116 cop 3579 ciin 3867 class class class wbr 3982 cxp 4602 cdm 4604 wrel 4609 wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iin 3869 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-er 6501 |
This theorem is referenced by: riinerm 6574 |
Copyright terms: Public domain | W3C validator |