| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iinerm | Unicode version | ||
| Description: The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| iinerm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1w 2257 | 
. . . 4
 | |
| 2 | 1 | cbvexv 1933 | 
. . 3
 | 
| 3 | eleq1w 2257 | 
. . . 4
 | |
| 4 | 3 | cbvexv 1933 | 
. . 3
 | 
| 5 | 2, 4 | bitri 184 | 
. 2
 | 
| 6 | r19.2m 3537 | 
. . . . 5
 | |
| 7 | errel 6601 | 
. . . . . . 7
 | |
| 8 | df-rel 4670 | 
. . . . . . 7
 | |
| 9 | 7, 8 | sylib 122 | 
. . . . . 6
 | 
| 10 | 9 | reximi 2594 | 
. . . . 5
 | 
| 11 | iinss 3968 | 
. . . . 5
 | |
| 12 | 6, 10, 11 | 3syl 17 | 
. . . 4
 | 
| 13 | df-rel 4670 | 
. . . 4
 | |
| 14 | 12, 13 | sylibr 134 | 
. . 3
 | 
| 15 | id 19 | 
. . . . . . . . . 10
 | |
| 16 | 15 | ersymb 6606 | 
. . . . . . . . 9
 | 
| 17 | 16 | biimpd 144 | 
. . . . . . . 8
 | 
| 18 | df-br 4034 | 
. . . . . . . 8
 | |
| 19 | df-br 4034 | 
. . . . . . . 8
 | |
| 20 | 17, 18, 19 | 3imtr3g 204 | 
. . . . . . 7
 | 
| 21 | 20 | ral2imi 2562 | 
. . . . . 6
 | 
| 22 | 21 | adantl 277 | 
. . . . 5
 | 
| 23 | df-br 4034 | 
. . . . . 6
 | |
| 24 | vex 2766 | 
. . . . . . . 8
 | |
| 25 | vex 2766 | 
. . . . . . . 8
 | |
| 26 | 24, 25 | opex 4262 | 
. . . . . . 7
 | 
| 27 | eliin 3921 | 
. . . . . . 7
 | |
| 28 | 26, 27 | ax-mp 5 | 
. . . . . 6
 | 
| 29 | 23, 28 | bitri 184 | 
. . . . 5
 | 
| 30 | df-br 4034 | 
. . . . . 6
 | |
| 31 | 25, 24 | opex 4262 | 
. . . . . . 7
 | 
| 32 | eliin 3921 | 
. . . . . . 7
 | |
| 33 | 31, 32 | ax-mp 5 | 
. . . . . 6
 | 
| 34 | 30, 33 | bitri 184 | 
. . . . 5
 | 
| 35 | 22, 29, 34 | 3imtr4g 205 | 
. . . 4
 | 
| 36 | 35 | imp 124 | 
. . 3
 | 
| 37 | r19.26 2623 | 
. . . . . 6
 | |
| 38 | 15 | ertr 6607 | 
. . . . . . . . 9
 | 
| 39 | df-br 4034 | 
. . . . . . . . . 10
 | |
| 40 | 18, 39 | anbi12i 460 | 
. . . . . . . . 9
 | 
| 41 | df-br 4034 | 
. . . . . . . . 9
 | |
| 42 | 38, 40, 41 | 3imtr3g 204 | 
. . . . . . . 8
 | 
| 43 | 42 | ral2imi 2562 | 
. . . . . . 7
 | 
| 44 | 43 | adantl 277 | 
. . . . . 6
 | 
| 45 | 37, 44 | biimtrrid 153 | 
. . . . 5
 | 
| 46 | df-br 4034 | 
. . . . . . 7
 | |
| 47 | vex 2766 | 
. . . . . . . . 9
 | |
| 48 | 25, 47 | opex 4262 | 
. . . . . . . 8
 | 
| 49 | eliin 3921 | 
. . . . . . . 8
 | |
| 50 | 48, 49 | ax-mp 5 | 
. . . . . . 7
 | 
| 51 | 46, 50 | bitri 184 | 
. . . . . 6
 | 
| 52 | 29, 51 | anbi12i 460 | 
. . . . 5
 | 
| 53 | df-br 4034 | 
. . . . . 6
 | |
| 54 | 24, 47 | opex 4262 | 
. . . . . . 7
 | 
| 55 | eliin 3921 | 
. . . . . . 7
 | |
| 56 | 54, 55 | ax-mp 5 | 
. . . . . 6
 | 
| 57 | 53, 56 | bitri 184 | 
. . . . 5
 | 
| 58 | 45, 52, 57 | 3imtr4g 205 | 
. . . 4
 | 
| 59 | 58 | imp 124 | 
. . 3
 | 
| 60 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 61 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 62 | 60, 61 | erref 6612 | 
. . . . . . . . . 10
 | 
| 63 | df-br 4034 | 
. . . . . . . . . 10
 | |
| 64 | 62, 63 | sylib 122 | 
. . . . . . . . 9
 | 
| 65 | 64 | expcom 116 | 
. . . . . . . 8
 | 
| 66 | 65 | ralimdv 2565 | 
. . . . . . 7
 | 
| 67 | 66 | com12 30 | 
. . . . . 6
 | 
| 68 | 67 | adantl 277 | 
. . . . 5
 | 
| 69 | r19.26 2623 | 
. . . . . . 7
 | |
| 70 | r19.2m 3537 | 
. . . . . . . . 9
 | |
| 71 | 24, 24 | opeldm 4869 | 
. . . . . . . . . . 11
 | 
| 72 | erdm 6602 | 
. . . . . . . . . . . . 13
 | |
| 73 | 72 | eleq2d 2266 | 
. . . . . . . . . . . 12
 | 
| 74 | 73 | biimpa 296 | 
. . . . . . . . . . 11
 | 
| 75 | 71, 74 | sylan2 286 | 
. . . . . . . . . 10
 | 
| 76 | 75 | rexlimivw 2610 | 
. . . . . . . . 9
 | 
| 77 | 70, 76 | syl 14 | 
. . . . . . . 8
 | 
| 78 | 77 | ex 115 | 
. . . . . . 7
 | 
| 79 | 69, 78 | biimtrrid 153 | 
. . . . . 6
 | 
| 80 | 79 | expdimp 259 | 
. . . . 5
 | 
| 81 | 68, 80 | impbid 129 | 
. . . 4
 | 
| 82 | df-br 4034 | 
. . . . 5
 | |
| 83 | 24, 24 | opex 4262 | 
. . . . . 6
 | 
| 84 | eliin 3921 | 
. . . . . 6
 | |
| 85 | 83, 84 | ax-mp 5 | 
. . . . 5
 | 
| 86 | 82, 85 | bitri 184 | 
. . . 4
 | 
| 87 | 81, 86 | bitr4di 198 | 
. . 3
 | 
| 88 | 14, 36, 59, 87 | iserd 6618 | 
. 2
 | 
| 89 | 5, 88 | sylanbr 285 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-iin 3919 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-er 6592 | 
| This theorem is referenced by: riinerm 6667 | 
| Copyright terms: Public domain | W3C validator |