Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iinerm | Unicode version |
Description: The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
iinerm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2231 | . . . 4 | |
2 | 1 | cbvexv 1911 | . . 3 |
3 | eleq1w 2231 | . . . 4 | |
4 | 3 | cbvexv 1911 | . . 3 |
5 | 2, 4 | bitri 183 | . 2 |
6 | r19.2m 3501 | . . . . 5 | |
7 | errel 6522 | . . . . . . 7 | |
8 | df-rel 4618 | . . . . . . 7 | |
9 | 7, 8 | sylib 121 | . . . . . 6 |
10 | 9 | reximi 2567 | . . . . 5 |
11 | iinss 3924 | . . . . 5 | |
12 | 6, 10, 11 | 3syl 17 | . . . 4 |
13 | df-rel 4618 | . . . 4 | |
14 | 12, 13 | sylibr 133 | . . 3 |
15 | id 19 | . . . . . . . . . 10 | |
16 | 15 | ersymb 6527 | . . . . . . . . 9 |
17 | 16 | biimpd 143 | . . . . . . . 8 |
18 | df-br 3990 | . . . . . . . 8 | |
19 | df-br 3990 | . . . . . . . 8 | |
20 | 17, 18, 19 | 3imtr3g 203 | . . . . . . 7 |
21 | 20 | ral2imi 2535 | . . . . . 6 |
22 | 21 | adantl 275 | . . . . 5 |
23 | df-br 3990 | . . . . . 6 | |
24 | vex 2733 | . . . . . . . 8 | |
25 | vex 2733 | . . . . . . . 8 | |
26 | 24, 25 | opex 4214 | . . . . . . 7 |
27 | eliin 3878 | . . . . . . 7 | |
28 | 26, 27 | ax-mp 5 | . . . . . 6 |
29 | 23, 28 | bitri 183 | . . . . 5 |
30 | df-br 3990 | . . . . . 6 | |
31 | 25, 24 | opex 4214 | . . . . . . 7 |
32 | eliin 3878 | . . . . . . 7 | |
33 | 31, 32 | ax-mp 5 | . . . . . 6 |
34 | 30, 33 | bitri 183 | . . . . 5 |
35 | 22, 29, 34 | 3imtr4g 204 | . . . 4 |
36 | 35 | imp 123 | . . 3 |
37 | r19.26 2596 | . . . . . 6 | |
38 | 15 | ertr 6528 | . . . . . . . . 9 |
39 | df-br 3990 | . . . . . . . . . 10 | |
40 | 18, 39 | anbi12i 457 | . . . . . . . . 9 |
41 | df-br 3990 | . . . . . . . . 9 | |
42 | 38, 40, 41 | 3imtr3g 203 | . . . . . . . 8 |
43 | 42 | ral2imi 2535 | . . . . . . 7 |
44 | 43 | adantl 275 | . . . . . 6 |
45 | 37, 44 | syl5bir 152 | . . . . 5 |
46 | df-br 3990 | . . . . . . 7 | |
47 | vex 2733 | . . . . . . . . 9 | |
48 | 25, 47 | opex 4214 | . . . . . . . 8 |
49 | eliin 3878 | . . . . . . . 8 | |
50 | 48, 49 | ax-mp 5 | . . . . . . 7 |
51 | 46, 50 | bitri 183 | . . . . . 6 |
52 | 29, 51 | anbi12i 457 | . . . . 5 |
53 | df-br 3990 | . . . . . 6 | |
54 | 24, 47 | opex 4214 | . . . . . . 7 |
55 | eliin 3878 | . . . . . . 7 | |
56 | 54, 55 | ax-mp 5 | . . . . . 6 |
57 | 53, 56 | bitri 183 | . . . . 5 |
58 | 45, 52, 57 | 3imtr4g 204 | . . . 4 |
59 | 58 | imp 123 | . . 3 |
60 | simpl 108 | . . . . . . . . . . 11 | |
61 | simpr 109 | . . . . . . . . . . 11 | |
62 | 60, 61 | erref 6533 | . . . . . . . . . 10 |
63 | df-br 3990 | . . . . . . . . . 10 | |
64 | 62, 63 | sylib 121 | . . . . . . . . 9 |
65 | 64 | expcom 115 | . . . . . . . 8 |
66 | 65 | ralimdv 2538 | . . . . . . 7 |
67 | 66 | com12 30 | . . . . . 6 |
68 | 67 | adantl 275 | . . . . 5 |
69 | r19.26 2596 | . . . . . . 7 | |
70 | r19.2m 3501 | . . . . . . . . 9 | |
71 | 24, 24 | opeldm 4814 | . . . . . . . . . . 11 |
72 | erdm 6523 | . . . . . . . . . . . . 13 | |
73 | 72 | eleq2d 2240 | . . . . . . . . . . . 12 |
74 | 73 | biimpa 294 | . . . . . . . . . . 11 |
75 | 71, 74 | sylan2 284 | . . . . . . . . . 10 |
76 | 75 | rexlimivw 2583 | . . . . . . . . 9 |
77 | 70, 76 | syl 14 | . . . . . . . 8 |
78 | 77 | ex 114 | . . . . . . 7 |
79 | 69, 78 | syl5bir 152 | . . . . . 6 |
80 | 79 | expdimp 257 | . . . . 5 |
81 | 68, 80 | impbid 128 | . . . 4 |
82 | df-br 3990 | . . . . 5 | |
83 | 24, 24 | opex 4214 | . . . . . 6 |
84 | eliin 3878 | . . . . . 6 | |
85 | 83, 84 | ax-mp 5 | . . . . 5 |
86 | 82, 85 | bitri 183 | . . . 4 |
87 | 81, 86 | bitr4di 197 | . . 3 |
88 | 14, 36, 59, 87 | iserd 6539 | . 2 |
89 | 5, 88 | sylanbr 283 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1485 wcel 2141 wral 2448 wrex 2449 cvv 2730 wss 3121 cop 3586 ciin 3874 class class class wbr 3989 cxp 4609 cdm 4611 wrel 4616 wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-iin 3876 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-er 6513 |
This theorem is referenced by: riinerm 6586 |
Copyright terms: Public domain | W3C validator |