| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findis | Unicode version | ||
| Description: Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 16310 for a bounded version not requiring ax-setind 4629. See finds 4692 for a proof in IZF. From this version, it is easy to prove of finds 4692, finds2 4693, finds1 4694. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-findis.nf0 |
|
| bj-findis.nf1 |
|
| bj-findis.nfsuc |
|
| bj-findis.0 |
|
| bj-findis.1 |
|
| bj-findis.suc |
|
| Ref | Expression |
|---|---|
| bj-findis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nn0suc 16327 |
. . . . 5
| |
| 2 | pm3.21 264 |
. . . . . . . 8
| |
| 3 | 2 | ad2antrr 488 |
. . . . . . 7
|
| 4 | pm2.04 82 |
. . . . . . . . . . 11
| |
| 5 | 4 | ralimi2 2590 |
. . . . . . . . . 10
|
| 6 | imim2 55 |
. . . . . . . . . . . 12
| |
| 7 | 6 | ral2imi 2595 |
. . . . . . . . . . 11
|
| 8 | 7 | imp 124 |
. . . . . . . . . 10
|
| 9 | 5, 8 | sylan2 286 |
. . . . . . . . 9
|
| 10 | r19.29 2668 |
. . . . . . . . . . 11
| |
| 11 | vex 2802 |
. . . . . . . . . . . . . . . 16
| |
| 12 | 11 | sucid 4508 |
. . . . . . . . . . . . . . 15
|
| 13 | eleq2 2293 |
. . . . . . . . . . . . . . 15
| |
| 14 | 12, 13 | mpbiri 168 |
. . . . . . . . . . . . . 14
|
| 15 | ax-1 6 |
. . . . . . . . . . . . . . 15
| |
| 16 | pm2.27 40 |
. . . . . . . . . . . . . . 15
| |
| 17 | 15, 16 | anim12ii 343 |
. . . . . . . . . . . . . 14
|
| 18 | 14, 17 | mpdan 421 |
. . . . . . . . . . . . 13
|
| 19 | 18 | impcom 125 |
. . . . . . . . . . . 12
|
| 20 | 19 | reximi 2627 |
. . . . . . . . . . 11
|
| 21 | 10, 20 | syl 14 |
. . . . . . . . . 10
|
| 22 | 21 | ex 115 |
. . . . . . . . 9
|
| 23 | 9, 22 | syl 14 |
. . . . . . . 8
|
| 24 | 23 | adantll 476 |
. . . . . . 7
|
| 25 | 3, 24 | orim12d 791 |
. . . . . 6
|
| 26 | 25 | ex 115 |
. . . . 5
|
| 27 | 1, 26 | syl7bi 165 |
. . . 4
|
| 28 | 27 | alrimiv 1920 |
. . 3
|
| 29 | nfv 1574 |
. . . . 5
| |
| 30 | bj-findis.nf1 |
. . . . 5
| |
| 31 | 29, 30 | nfim 1618 |
. . . 4
|
| 32 | nfv 1574 |
. . . . 5
| |
| 33 | nfv 1574 |
. . . . . . 7
| |
| 34 | bj-findis.nf0 |
. . . . . . 7
| |
| 35 | 33, 34 | nfan 1611 |
. . . . . 6
|
| 36 | nfcv 2372 |
. . . . . . 7
| |
| 37 | nfv 1574 |
. . . . . . . 8
| |
| 38 | bj-findis.nfsuc |
. . . . . . . 8
| |
| 39 | 37, 38 | nfan 1611 |
. . . . . . 7
|
| 40 | 36, 39 | nfrexw 2569 |
. . . . . 6
|
| 41 | 35, 40 | nfor 1620 |
. . . . 5
|
| 42 | 32, 41 | nfim 1618 |
. . . 4
|
| 43 | nfv 1574 |
. . . 4
| |
| 44 | nfv 1574 |
. . . 4
| |
| 45 | eleq1 2292 |
. . . . . 6
| |
| 46 | 45 | biimprd 158 |
. . . . 5
|
| 47 | bj-findis.1 |
. . . . 5
| |
| 48 | 46, 47 | imim12d 74 |
. . . 4
|
| 49 | eleq1 2292 |
. . . . . 6
| |
| 50 | 49 | biimpd 144 |
. . . . 5
|
| 51 | eqtr 2247 |
. . . . . . . 8
| |
| 52 | bj-findis.0 |
. . . . . . . 8
| |
| 53 | 51, 52 | syl 14 |
. . . . . . 7
|
| 54 | 53 | expimpd 363 |
. . . . . 6
|
| 55 | eqtr 2247 |
. . . . . . . . 9
| |
| 56 | bj-findis.suc |
. . . . . . . . 9
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . 8
|
| 58 | 57 | expimpd 363 |
. . . . . . 7
|
| 59 | 58 | rexlimdvw 2652 |
. . . . . 6
|
| 60 | 54, 59 | jaod 722 |
. . . . 5
|
| 61 | 50, 60 | imim12d 74 |
. . . 4
|
| 62 | 31, 42, 43, 44, 48, 61 | setindis 16330 |
. . 3
|
| 63 | 28, 62 | syl 14 |
. 2
|
| 64 | df-ral 2513 |
. 2
| |
| 65 | 63, 64 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-bd0 16176 ax-bdim 16177 ax-bdan 16178 ax-bdor 16179 ax-bdn 16180 ax-bdal 16181 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 ax-infvn 16304 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-findisg 16343 bj-findes 16344 |
| Copyright terms: Public domain | W3C validator |