Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findis | Unicode version |
Description: Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 13982 for a bounded version not requiring ax-setind 4521. See finds 4584 for a proof in IZF. From this version, it is easy to prove of finds 4584, finds2 4585, finds1 4586. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-findis.nf0 | |
bj-findis.nf1 | |
bj-findis.nfsuc | |
bj-findis.0 | |
bj-findis.1 | |
bj-findis.suc |
Ref | Expression |
---|---|
bj-findis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nn0suc 13999 | . . . . 5 | |
2 | pm3.21 262 | . . . . . . . 8 | |
3 | 2 | ad2antrr 485 | . . . . . . 7 |
4 | pm2.04 82 | . . . . . . . . . . 11 | |
5 | 4 | ralimi2 2530 | . . . . . . . . . 10 |
6 | imim2 55 | . . . . . . . . . . . 12 | |
7 | 6 | ral2imi 2535 | . . . . . . . . . . 11 |
8 | 7 | imp 123 | . . . . . . . . . 10 |
9 | 5, 8 | sylan2 284 | . . . . . . . . 9 |
10 | r19.29 2607 | . . . . . . . . . . 11 | |
11 | vex 2733 | . . . . . . . . . . . . . . . 16 | |
12 | 11 | sucid 4402 | . . . . . . . . . . . . . . 15 |
13 | eleq2 2234 | . . . . . . . . . . . . . . 15 | |
14 | 12, 13 | mpbiri 167 | . . . . . . . . . . . . . 14 |
15 | ax-1 6 | . . . . . . . . . . . . . . 15 | |
16 | pm2.27 40 | . . . . . . . . . . . . . . 15 | |
17 | 15, 16 | anim12ii 341 | . . . . . . . . . . . . . 14 |
18 | 14, 17 | mpdan 419 | . . . . . . . . . . . . 13 |
19 | 18 | impcom 124 | . . . . . . . . . . . 12 |
20 | 19 | reximi 2567 | . . . . . . . . . . 11 |
21 | 10, 20 | syl 14 | . . . . . . . . . 10 |
22 | 21 | ex 114 | . . . . . . . . 9 |
23 | 9, 22 | syl 14 | . . . . . . . 8 |
24 | 23 | adantll 473 | . . . . . . 7 |
25 | 3, 24 | orim12d 781 | . . . . . 6 |
26 | 25 | ex 114 | . . . . 5 |
27 | 1, 26 | syl7bi 164 | . . . 4 |
28 | 27 | alrimiv 1867 | . . 3 |
29 | nfv 1521 | . . . . 5 | |
30 | bj-findis.nf1 | . . . . 5 | |
31 | 29, 30 | nfim 1565 | . . . 4 |
32 | nfv 1521 | . . . . 5 | |
33 | nfv 1521 | . . . . . . 7 | |
34 | bj-findis.nf0 | . . . . . . 7 | |
35 | 33, 34 | nfan 1558 | . . . . . 6 |
36 | nfcv 2312 | . . . . . . 7 | |
37 | nfv 1521 | . . . . . . . 8 | |
38 | bj-findis.nfsuc | . . . . . . . 8 | |
39 | 37, 38 | nfan 1558 | . . . . . . 7 |
40 | 36, 39 | nfrexxy 2509 | . . . . . 6 |
41 | 35, 40 | nfor 1567 | . . . . 5 |
42 | 32, 41 | nfim 1565 | . . . 4 |
43 | nfv 1521 | . . . 4 | |
44 | nfv 1521 | . . . 4 | |
45 | eleq1 2233 | . . . . . 6 | |
46 | 45 | biimprd 157 | . . . . 5 |
47 | bj-findis.1 | . . . . 5 | |
48 | 46, 47 | imim12d 74 | . . . 4 |
49 | eleq1 2233 | . . . . . 6 | |
50 | 49 | biimpd 143 | . . . . 5 |
51 | eqtr 2188 | . . . . . . . 8 | |
52 | bj-findis.0 | . . . . . . . 8 | |
53 | 51, 52 | syl 14 | . . . . . . 7 |
54 | 53 | expimpd 361 | . . . . . 6 |
55 | eqtr 2188 | . . . . . . . . 9 | |
56 | bj-findis.suc | . . . . . . . . 9 | |
57 | 55, 56 | syl 14 | . . . . . . . 8 |
58 | 57 | expimpd 361 | . . . . . . 7 |
59 | 58 | rexlimdvw 2591 | . . . . . 6 |
60 | 54, 59 | jaod 712 | . . . . 5 |
61 | 50, 60 | imim12d 74 | . . . 4 |
62 | 31, 42, 43, 44, 48, 61 | setindis 14002 | . . 3 |
63 | 28, 62 | syl 14 | . 2 |
64 | df-ral 2453 | . 2 | |
65 | 63, 64 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wal 1346 wceq 1348 wnf 1453 wcel 2141 wral 2448 wrex 2449 c0 3414 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-bd0 13848 ax-bdim 13849 ax-bdan 13850 ax-bdor 13851 ax-bdn 13852 ax-bdal 13853 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-infvn 13976 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: bj-findisg 14015 bj-findes 14016 |
Copyright terms: Public domain | W3C validator |