| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findis | Unicode version | ||
| Description: Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 16082 for a bounded version not requiring ax-setind 4603. See finds 4666 for a proof in IZF. From this version, it is easy to prove of finds 4666, finds2 4667, finds1 4668. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-findis.nf0 |
|
| bj-findis.nf1 |
|
| bj-findis.nfsuc |
|
| bj-findis.0 |
|
| bj-findis.1 |
|
| bj-findis.suc |
|
| Ref | Expression |
|---|---|
| bj-findis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nn0suc 16099 |
. . . . 5
| |
| 2 | pm3.21 264 |
. . . . . . . 8
| |
| 3 | 2 | ad2antrr 488 |
. . . . . . 7
|
| 4 | pm2.04 82 |
. . . . . . . . . . 11
| |
| 5 | 4 | ralimi2 2568 |
. . . . . . . . . 10
|
| 6 | imim2 55 |
. . . . . . . . . . . 12
| |
| 7 | 6 | ral2imi 2573 |
. . . . . . . . . . 11
|
| 8 | 7 | imp 124 |
. . . . . . . . . 10
|
| 9 | 5, 8 | sylan2 286 |
. . . . . . . . 9
|
| 10 | r19.29 2645 |
. . . . . . . . . . 11
| |
| 11 | vex 2779 |
. . . . . . . . . . . . . . . 16
| |
| 12 | 11 | sucid 4482 |
. . . . . . . . . . . . . . 15
|
| 13 | eleq2 2271 |
. . . . . . . . . . . . . . 15
| |
| 14 | 12, 13 | mpbiri 168 |
. . . . . . . . . . . . . 14
|
| 15 | ax-1 6 |
. . . . . . . . . . . . . . 15
| |
| 16 | pm2.27 40 |
. . . . . . . . . . . . . . 15
| |
| 17 | 15, 16 | anim12ii 343 |
. . . . . . . . . . . . . 14
|
| 18 | 14, 17 | mpdan 421 |
. . . . . . . . . . . . 13
|
| 19 | 18 | impcom 125 |
. . . . . . . . . . . 12
|
| 20 | 19 | reximi 2605 |
. . . . . . . . . . 11
|
| 21 | 10, 20 | syl 14 |
. . . . . . . . . 10
|
| 22 | 21 | ex 115 |
. . . . . . . . 9
|
| 23 | 9, 22 | syl 14 |
. . . . . . . 8
|
| 24 | 23 | adantll 476 |
. . . . . . 7
|
| 25 | 3, 24 | orim12d 788 |
. . . . . 6
|
| 26 | 25 | ex 115 |
. . . . 5
|
| 27 | 1, 26 | syl7bi 165 |
. . . 4
|
| 28 | 27 | alrimiv 1898 |
. . 3
|
| 29 | nfv 1552 |
. . . . 5
| |
| 30 | bj-findis.nf1 |
. . . . 5
| |
| 31 | 29, 30 | nfim 1596 |
. . . 4
|
| 32 | nfv 1552 |
. . . . 5
| |
| 33 | nfv 1552 |
. . . . . . 7
| |
| 34 | bj-findis.nf0 |
. . . . . . 7
| |
| 35 | 33, 34 | nfan 1589 |
. . . . . 6
|
| 36 | nfcv 2350 |
. . . . . . 7
| |
| 37 | nfv 1552 |
. . . . . . . 8
| |
| 38 | bj-findis.nfsuc |
. . . . . . . 8
| |
| 39 | 37, 38 | nfan 1589 |
. . . . . . 7
|
| 40 | 36, 39 | nfrexw 2547 |
. . . . . 6
|
| 41 | 35, 40 | nfor 1598 |
. . . . 5
|
| 42 | 32, 41 | nfim 1596 |
. . . 4
|
| 43 | nfv 1552 |
. . . 4
| |
| 44 | nfv 1552 |
. . . 4
| |
| 45 | eleq1 2270 |
. . . . . 6
| |
| 46 | 45 | biimprd 158 |
. . . . 5
|
| 47 | bj-findis.1 |
. . . . 5
| |
| 48 | 46, 47 | imim12d 74 |
. . . 4
|
| 49 | eleq1 2270 |
. . . . . 6
| |
| 50 | 49 | biimpd 144 |
. . . . 5
|
| 51 | eqtr 2225 |
. . . . . . . 8
| |
| 52 | bj-findis.0 |
. . . . . . . 8
| |
| 53 | 51, 52 | syl 14 |
. . . . . . 7
|
| 54 | 53 | expimpd 363 |
. . . . . 6
|
| 55 | eqtr 2225 |
. . . . . . . . 9
| |
| 56 | bj-findis.suc |
. . . . . . . . 9
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . 8
|
| 58 | 57 | expimpd 363 |
. . . . . . 7
|
| 59 | 58 | rexlimdvw 2629 |
. . . . . 6
|
| 60 | 54, 59 | jaod 719 |
. . . . 5
|
| 61 | 50, 60 | imim12d 74 |
. . . 4
|
| 62 | 31, 42, 43, 44, 48, 61 | setindis 16102 |
. . 3
|
| 63 | 28, 62 | syl 14 |
. 2
|
| 64 | df-ral 2491 |
. 2
| |
| 65 | 63, 64 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-nul 4186 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-bd0 15948 ax-bdim 15949 ax-bdan 15950 ax-bdor 15951 ax-bdn 15952 ax-bdal 15953 ax-bdex 15954 ax-bdeq 15955 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 ax-infvn 16076 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-bdc 15976 df-bj-ind 16062 |
| This theorem is referenced by: bj-findisg 16115 bj-findes 16116 |
| Copyright terms: Public domain | W3C validator |