Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findis Unicode version

Theorem bj-findis 15915
Description: Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 15883 for a bounded version not requiring ax-setind 4585. See finds 4648 for a proof in IZF. From this version, it is easy to prove of finds 4648, finds2 4649, finds1 4650. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-findis.nf0  |-  F/ x ps
bj-findis.nf1  |-  F/ x ch
bj-findis.nfsuc  |-  F/ x th
bj-findis.0  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
bj-findis.1  |-  ( x  =  y  ->  ( ph  ->  ch ) )
bj-findis.suc  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
Assertion
Ref Expression
bj-findis  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( x, y)    th( x, y)

Proof of Theorem bj-findis
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bj-nn0suc 15900 . . . . 5  |-  ( z  e.  om  <->  ( z  =  (/)  \/  E. y  e.  om  z  =  suc  y ) )
2 pm3.21 264 . . . . . . . 8  |-  ( ps 
->  ( z  =  (/)  ->  ( z  =  (/)  /\ 
ps ) ) )
32ad2antrr 488 . . . . . . 7  |-  ( ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  /\  A. y  e.  z  ( y  e.  om  ->  ch ) )  ->  (
z  =  (/)  ->  (
z  =  (/)  /\  ps ) ) )
4 pm2.04 82 . . . . . . . . . . 11  |-  ( ( y  e.  z  -> 
( y  e.  om  ->  ch ) )  -> 
( y  e.  om  ->  ( y  e.  z  ->  ch ) ) )
54ralimi2 2566 . . . . . . . . . 10  |-  ( A. y  e.  z  (
y  e.  om  ->  ch )  ->  A. y  e.  om  ( y  e.  z  ->  ch )
)
6 imim2 55 . . . . . . . . . . . 12  |-  ( ( ch  ->  th )  ->  ( ( y  e.  z  ->  ch )  ->  ( y  e.  z  ->  th ) ) )
76ral2imi 2571 . . . . . . . . . . 11  |-  ( A. y  e.  om  ( ch  ->  th )  ->  ( A. y  e.  om  ( y  e.  z  ->  ch )  ->  A. y  e.  om  ( y  e.  z  ->  th ) ) )
87imp 124 . . . . . . . . . 10  |-  ( ( A. y  e.  om  ( ch  ->  th )  /\  A. y  e.  om  ( y  e.  z  ->  ch ) )  ->  A. y  e.  om  ( y  e.  z  ->  th ) )
95, 8sylan2 286 . . . . . . . . 9  |-  ( ( A. y  e.  om  ( ch  ->  th )  /\  A. y  e.  z  ( y  e.  om  ->  ch ) )  ->  A. y  e.  om  ( y  e.  z  ->  th ) )
10 r19.29 2643 . . . . . . . . . . 11  |-  ( ( A. y  e.  om  ( y  e.  z  ->  th )  /\  E. y  e.  om  z  =  suc  y )  ->  E. y  e.  om  ( ( y  e.  z  ->  th )  /\  z  =  suc  y ) )
11 vex 2775 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
1211sucid 4464 . . . . . . . . . . . . . . 15  |-  y  e. 
suc  y
13 eleq2 2269 . . . . . . . . . . . . . . 15  |-  ( z  =  suc  y  -> 
( y  e.  z  <-> 
y  e.  suc  y
) )
1412, 13mpbiri 168 . . . . . . . . . . . . . 14  |-  ( z  =  suc  y  -> 
y  e.  z )
15 ax-1 6 . . . . . . . . . . . . . . 15  |-  ( z  =  suc  y  -> 
( ( y  e.  z  ->  th )  ->  z  =  suc  y
) )
16 pm2.27 40 . . . . . . . . . . . . . . 15  |-  ( y  e.  z  ->  (
( y  e.  z  ->  th )  ->  th )
)
1715, 16anim12ii 343 . . . . . . . . . . . . . 14  |-  ( ( z  =  suc  y  /\  y  e.  z
)  ->  ( (
y  e.  z  ->  th )  ->  ( z  =  suc  y  /\  th ) ) )
1814, 17mpdan 421 . . . . . . . . . . . . 13  |-  ( z  =  suc  y  -> 
( ( y  e.  z  ->  th )  ->  ( z  =  suc  y  /\  th ) ) )
1918impcom 125 . . . . . . . . . . . 12  |-  ( ( ( y  e.  z  ->  th )  /\  z  =  suc  y )  -> 
( z  =  suc  y  /\  th ) )
2019reximi 2603 . . . . . . . . . . 11  |-  ( E. y  e.  om  (
( y  e.  z  ->  th )  /\  z  =  suc  y )  ->  E. y  e.  om  ( z  =  suc  y  /\  th ) )
2110, 20syl 14 . . . . . . . . . 10  |-  ( ( A. y  e.  om  ( y  e.  z  ->  th )  /\  E. y  e.  om  z  =  suc  y )  ->  E. y  e.  om  ( z  =  suc  y  /\  th ) )
2221ex 115 . . . . . . . . 9  |-  ( A. y  e.  om  (
y  e.  z  ->  th )  ->  ( E. y  e.  om  z  =  suc  y  ->  E. y  e.  om  ( z  =  suc  y  /\  th ) ) )
239, 22syl 14 . . . . . . . 8  |-  ( ( A. y  e.  om  ( ch  ->  th )  /\  A. y  e.  z  ( y  e.  om  ->  ch ) )  -> 
( E. y  e. 
om  z  =  suc  y  ->  E. y  e.  om  ( z  =  suc  y  /\  th ) ) )
2423adantll 476 . . . . . . 7  |-  ( ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  /\  A. y  e.  z  ( y  e.  om  ->  ch ) )  ->  ( E. y  e.  om  z  =  suc  y  ->  E. y  e.  om  ( z  =  suc  y  /\  th ) ) )
253, 24orim12d 788 . . . . . 6  |-  ( ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  /\  A. y  e.  z  ( y  e.  om  ->  ch ) )  ->  (
( z  =  (/)  \/ 
E. y  e.  om  z  =  suc  y )  ->  ( ( z  =  (/)  /\  ps )  \/  E. y  e.  om  ( z  =  suc  y  /\  th ) ) ) )
2625ex 115 . . . . 5  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A. y  e.  z 
( y  e.  om  ->  ch )  ->  (
( z  =  (/)  \/ 
E. y  e.  om  z  =  suc  y )  ->  ( ( z  =  (/)  /\  ps )  \/  E. y  e.  om  ( z  =  suc  y  /\  th ) ) ) ) )
271, 26syl7bi 165 . . . 4  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A. y  e.  z 
( y  e.  om  ->  ch )  ->  (
z  e.  om  ->  ( ( z  =  (/)  /\ 
ps )  \/  E. y  e.  om  (
z  =  suc  y  /\  th ) ) ) ) )
2827alrimiv 1897 . . 3  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. z
( A. y  e.  z  ( y  e. 
om  ->  ch )  -> 
( z  e.  om  ->  ( ( z  =  (/)  /\  ps )  \/ 
E. y  e.  om  ( z  =  suc  y  /\  th ) ) ) ) )
29 nfv 1551 . . . . 5  |-  F/ x  y  e.  om
30 bj-findis.nf1 . . . . 5  |-  F/ x ch
3129, 30nfim 1595 . . . 4  |-  F/ x
( y  e.  om  ->  ch )
32 nfv 1551 . . . . 5  |-  F/ x  z  e.  om
33 nfv 1551 . . . . . . 7  |-  F/ x  z  =  (/)
34 bj-findis.nf0 . . . . . . 7  |-  F/ x ps
3533, 34nfan 1588 . . . . . 6  |-  F/ x
( z  =  (/)  /\ 
ps )
36 nfcv 2348 . . . . . . 7  |-  F/_ x om
37 nfv 1551 . . . . . . . 8  |-  F/ x  z  =  suc  y
38 bj-findis.nfsuc . . . . . . . 8  |-  F/ x th
3937, 38nfan 1588 . . . . . . 7  |-  F/ x
( z  =  suc  y  /\  th )
4036, 39nfrexw 2545 . . . . . 6  |-  F/ x E. y  e.  om  ( z  =  suc  y  /\  th )
4135, 40nfor 1597 . . . . 5  |-  F/ x
( ( z  =  (/)  /\  ps )  \/ 
E. y  e.  om  ( z  =  suc  y  /\  th ) )
4232, 41nfim 1595 . . . 4  |-  F/ x
( z  e.  om  ->  ( ( z  =  (/)  /\  ps )  \/ 
E. y  e.  om  ( z  =  suc  y  /\  th ) ) )
43 nfv 1551 . . . 4  |-  F/ z ( x  e.  om  ->  ph )
44 nfv 1551 . . . 4  |-  F/ z ( y  e.  om  ->  ch )
45 eleq1 2268 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  om  <->  y  e.  om ) )
4645biimprd 158 . . . . 5  |-  ( x  =  y  ->  (
y  e.  om  ->  x  e.  om ) )
47 bj-findis.1 . . . . 5  |-  ( x  =  y  ->  ( ph  ->  ch ) )
4846, 47imim12d 74 . . . 4  |-  ( x  =  y  ->  (
( x  e.  om  ->  ph )  ->  (
y  e.  om  ->  ch ) ) )
49 eleq1 2268 . . . . . 6  |-  ( x  =  z  ->  (
x  e.  om  <->  z  e.  om ) )
5049biimpd 144 . . . . 5  |-  ( x  =  z  ->  (
x  e.  om  ->  z  e.  om ) )
51 eqtr 2223 . . . . . . . 8  |-  ( ( x  =  z  /\  z  =  (/) )  ->  x  =  (/) )
52 bj-findis.0 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
5351, 52syl 14 . . . . . . 7  |-  ( ( x  =  z  /\  z  =  (/) )  -> 
( ps  ->  ph )
)
5453expimpd 363 . . . . . 6  |-  ( x  =  z  ->  (
( z  =  (/)  /\ 
ps )  ->  ph )
)
55 eqtr 2223 . . . . . . . . 9  |-  ( ( x  =  z  /\  z  =  suc  y )  ->  x  =  suc  y )
56 bj-findis.suc . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
5755, 56syl 14 . . . . . . . 8  |-  ( ( x  =  z  /\  z  =  suc  y )  ->  ( th  ->  ph ) )
5857expimpd 363 . . . . . . 7  |-  ( x  =  z  ->  (
( z  =  suc  y  /\  th )  ->  ph ) )
5958rexlimdvw 2627 . . . . . 6  |-  ( x  =  z  ->  ( E. y  e.  om  ( z  =  suc  y  /\  th )  ->  ph ) )
6054, 59jaod 719 . . . . 5  |-  ( x  =  z  ->  (
( ( z  =  (/)  /\  ps )  \/ 
E. y  e.  om  ( z  =  suc  y  /\  th ) )  ->  ph ) )
6150, 60imim12d 74 . . . 4  |-  ( x  =  z  ->  (
( z  e.  om  ->  ( ( z  =  (/)  /\  ps )  \/ 
E. y  e.  om  ( z  =  suc  y  /\  th ) ) )  ->  ( x  e.  om  ->  ph ) ) )
6231, 42, 43, 44, 48, 61setindis 15903 . . 3  |-  ( A. z ( A. y  e.  z  ( y  e.  om  ->  ch )  ->  ( z  e.  om  ->  ( ( z  =  (/)  /\  ps )  \/ 
E. y  e.  om  ( z  =  suc  y  /\  th ) ) ) )  ->  A. x
( x  e.  om  ->  ph ) )
6328, 62syl 14 . 2  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x
( x  e.  om  ->  ph ) )
64 df-ral 2489 . 2  |-  ( A. x  e.  om  ph  <->  A. x
( x  e.  om  ->  ph ) )
6563, 64sylibr 134 1  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710   A.wal 1371    = wceq 1373   F/wnf 1483    e. wcel 2176   A.wral 2484   E.wrex 2485   (/)c0 3460   suc csuc 4412   omcom 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-nul 4170  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-bd0 15749  ax-bdim 15750  ax-bdan 15751  ax-bdor 15752  ax-bdn 15753  ax-bdal 15754  ax-bdex 15755  ax-bdeq 15756  ax-bdel 15757  ax-bdsb 15758  ax-bdsep 15820  ax-infvn 15877
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-suc 4418  df-iom 4639  df-bdc 15777  df-bj-ind 15863
This theorem is referenced by:  bj-findisg  15916  bj-findes  15917
  Copyright terms: Public domain W3C validator