Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findis | Unicode version |
Description: Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 13481 for a bounded version not requiring ax-setind 4494. See finds 4557 for a proof in IZF. From this version, it is easy to prove of finds 4557, finds2 4558, finds1 4559. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-findis.nf0 | |
bj-findis.nf1 | |
bj-findis.nfsuc | |
bj-findis.0 | |
bj-findis.1 | |
bj-findis.suc |
Ref | Expression |
---|---|
bj-findis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nn0suc 13498 | . . . . 5 | |
2 | pm3.21 262 | . . . . . . . 8 | |
3 | 2 | ad2antrr 480 | . . . . . . 7 |
4 | pm2.04 82 | . . . . . . . . . . 11 | |
5 | 4 | ralimi2 2517 | . . . . . . . . . 10 |
6 | imim2 55 | . . . . . . . . . . . 12 | |
7 | 6 | ral2imi 2522 | . . . . . . . . . . 11 |
8 | 7 | imp 123 | . . . . . . . . . 10 |
9 | 5, 8 | sylan2 284 | . . . . . . . . 9 |
10 | r19.29 2594 | . . . . . . . . . . 11 | |
11 | vex 2715 | . . . . . . . . . . . . . . . 16 | |
12 | 11 | sucid 4376 | . . . . . . . . . . . . . . 15 |
13 | eleq2 2221 | . . . . . . . . . . . . . . 15 | |
14 | 12, 13 | mpbiri 167 | . . . . . . . . . . . . . 14 |
15 | ax-1 6 | . . . . . . . . . . . . . . 15 | |
16 | pm2.27 40 | . . . . . . . . . . . . . . 15 | |
17 | 15, 16 | anim12ii 341 | . . . . . . . . . . . . . 14 |
18 | 14, 17 | mpdan 418 | . . . . . . . . . . . . 13 |
19 | 18 | impcom 124 | . . . . . . . . . . . 12 |
20 | 19 | reximi 2554 | . . . . . . . . . . 11 |
21 | 10, 20 | syl 14 | . . . . . . . . . 10 |
22 | 21 | ex 114 | . . . . . . . . 9 |
23 | 9, 22 | syl 14 | . . . . . . . 8 |
24 | 23 | adantll 468 | . . . . . . 7 |
25 | 3, 24 | orim12d 776 | . . . . . 6 |
26 | 25 | ex 114 | . . . . 5 |
27 | 1, 26 | syl7bi 164 | . . . 4 |
28 | 27 | alrimiv 1854 | . . 3 |
29 | nfv 1508 | . . . . 5 | |
30 | bj-findis.nf1 | . . . . 5 | |
31 | 29, 30 | nfim 1552 | . . . 4 |
32 | nfv 1508 | . . . . 5 | |
33 | nfv 1508 | . . . . . . 7 | |
34 | bj-findis.nf0 | . . . . . . 7 | |
35 | 33, 34 | nfan 1545 | . . . . . 6 |
36 | nfcv 2299 | . . . . . . 7 | |
37 | nfv 1508 | . . . . . . . 8 | |
38 | bj-findis.nfsuc | . . . . . . . 8 | |
39 | 37, 38 | nfan 1545 | . . . . . . 7 |
40 | 36, 39 | nfrexxy 2496 | . . . . . 6 |
41 | 35, 40 | nfor 1554 | . . . . 5 |
42 | 32, 41 | nfim 1552 | . . . 4 |
43 | nfv 1508 | . . . 4 | |
44 | nfv 1508 | . . . 4 | |
45 | eleq1 2220 | . . . . . 6 | |
46 | 45 | biimprd 157 | . . . . 5 |
47 | bj-findis.1 | . . . . 5 | |
48 | 46, 47 | imim12d 74 | . . . 4 |
49 | eleq1 2220 | . . . . . 6 | |
50 | 49 | biimpd 143 | . . . . 5 |
51 | eqtr 2175 | . . . . . . . 8 | |
52 | bj-findis.0 | . . . . . . . 8 | |
53 | 51, 52 | syl 14 | . . . . . . 7 |
54 | 53 | expimpd 361 | . . . . . 6 |
55 | eqtr 2175 | . . . . . . . . 9 | |
56 | bj-findis.suc | . . . . . . . . 9 | |
57 | 55, 56 | syl 14 | . . . . . . . 8 |
58 | 57 | expimpd 361 | . . . . . . 7 |
59 | 58 | rexlimdvw 2578 | . . . . . 6 |
60 | 54, 59 | jaod 707 | . . . . 5 |
61 | 50, 60 | imim12d 74 | . . . 4 |
62 | 31, 42, 43, 44, 48, 61 | setindis 13501 | . . 3 |
63 | 28, 62 | syl 14 | . 2 |
64 | df-ral 2440 | . 2 | |
65 | 63, 64 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wal 1333 wceq 1335 wnf 1440 wcel 2128 wral 2435 wrex 2436 c0 3394 csuc 4324 com 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-nul 4090 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-bd0 13347 ax-bdim 13348 ax-bdan 13349 ax-bdor 13350 ax-bdn 13351 ax-bdal 13352 ax-bdex 13353 ax-bdeq 13354 ax-bdel 13355 ax-bdsb 13356 ax-bdsep 13418 ax-infvn 13475 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-suc 4330 df-iom 4548 df-bdc 13375 df-bj-ind 13461 |
This theorem is referenced by: bj-findisg 13514 bj-findes 13515 |
Copyright terms: Public domain | W3C validator |