| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss2ixp | Unicode version | ||
| Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.) |
| Ref | Expression |
|---|---|
| ss2ixp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 |
. . . . 5
| |
| 2 | 1 | ral2imi 2570 |
. . . 4
|
| 3 | 2 | anim2d 337 |
. . 3
|
| 4 | 3 | ss2abdv 3265 |
. 2
|
| 5 | df-ixp 6785 |
. 2
| |
| 6 | df-ixp 6785 |
. 2
| |
| 7 | 4, 5, 6 | 3sstr4g 3235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-in 3171 df-ss 3178 df-ixp 6785 |
| This theorem is referenced by: ixpeq2 6798 prdsvallem 13046 |
| Copyright terms: Public domain | W3C validator |