Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2ixp Unicode version

Theorem ss2ixp 6612
 Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
Assertion
Ref Expression
ss2ixp

Proof of Theorem ss2ixp
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssel 3095 . . . . 5
21ral2imi 2500 . . . 4
32anim2d 335 . . 3
43ss2abdv 3174 . 2
5 df-ixp 6600 . 2
6 df-ixp 6600 . 2
74, 5, 63sstr4g 3144 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wcel 1481  cab 2126  wral 2417   wss 3075   wfn 5125  cfv 5130  cixp 6599 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-in 3081  df-ss 3088  df-ixp 6600 This theorem is referenced by:  ixpeq2  6613
 Copyright terms: Public domain W3C validator