| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reubidva | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) |
| Ref | Expression |
|---|---|
| reubidva.1 |
|
| Ref | Expression |
|---|---|
| reubidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. 2
| |
| 2 | reubidva.1 |
. 2
| |
| 3 | 1, 2 | reubida 2688 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-eu 2057 df-reu 2491 |
| This theorem is referenced by: reubidv 2690 f1ofveu 5932 srpospr 7896 icoshftf1o 10113 divalgb 12236 1arith2 12691 |
| Copyright terms: Public domain | W3C validator |