Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reubidva | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) |
Ref | Expression |
---|---|
reubidva.1 |
Ref | Expression |
---|---|
reubidva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 | |
2 | reubidva.1 | . 2 | |
3 | 1, 2 | reubida 2647 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 wreu 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-eu 2017 df-reu 2451 |
This theorem is referenced by: reubidv 2649 f1ofveu 5830 srpospr 7724 icoshftf1o 9927 divalgb 11862 1arith2 12298 |
Copyright terms: Public domain | W3C validator |