| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > icoshftf1o | Unicode version | ||
| Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| icoshftf1o.1 |
|
| Ref | Expression |
|---|---|
| icoshftf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoshft 10147 |
. . 3
| |
| 2 | 1 | ralrimiv 2580 |
. 2
|
| 3 | readdcl 8086 |
. . . . . . . . 9
| |
| 4 | 3 | 3adant2 1019 |
. . . . . . . 8
|
| 5 | readdcl 8086 |
. . . . . . . . 9
| |
| 6 | 5 | 3adant1 1018 |
. . . . . . . 8
|
| 7 | renegcl 8368 |
. . . . . . . . 9
| |
| 8 | 7 | 3ad2ant3 1023 |
. . . . . . . 8
|
| 9 | icoshft 10147 |
. . . . . . . 8
| |
| 10 | 4, 6, 8, 9 | syl3anc 1250 |
. . . . . . 7
|
| 11 | 10 | imp 124 |
. . . . . 6
|
| 12 | 6 | rexrd 8157 |
. . . . . . . . . 10
|
| 13 | icossre 10111 |
. . . . . . . . . 10
| |
| 14 | 4, 12, 13 | syl2anc 411 |
. . . . . . . . 9
|
| 15 | 14 | sselda 3201 |
. . . . . . . 8
|
| 16 | 15 | recnd 8136 |
. . . . . . 7
|
| 17 | simpl3 1005 |
. . . . . . . 8
| |
| 18 | 17 | recnd 8136 |
. . . . . . 7
|
| 19 | 16, 18 | negsubd 8424 |
. . . . . 6
|
| 20 | 4 | recnd 8136 |
. . . . . . . . . 10
|
| 21 | simp3 1002 |
. . . . . . . . . . 11
| |
| 22 | 21 | recnd 8136 |
. . . . . . . . . 10
|
| 23 | 20, 22 | negsubd 8424 |
. . . . . . . . 9
|
| 24 | simp1 1000 |
. . . . . . . . . . 11
| |
| 25 | 24 | recnd 8136 |
. . . . . . . . . 10
|
| 26 | 25, 22 | pncand 8419 |
. . . . . . . . 9
|
| 27 | 23, 26 | eqtrd 2240 |
. . . . . . . 8
|
| 28 | 6 | recnd 8136 |
. . . . . . . . . 10
|
| 29 | 28, 22 | negsubd 8424 |
. . . . . . . . 9
|
| 30 | simp2 1001 |
. . . . . . . . . . 11
| |
| 31 | 30 | recnd 8136 |
. . . . . . . . . 10
|
| 32 | 31, 22 | pncand 8419 |
. . . . . . . . 9
|
| 33 | 29, 32 | eqtrd 2240 |
. . . . . . . 8
|
| 34 | 27, 33 | oveq12d 5985 |
. . . . . . 7
|
| 35 | 34 | adantr 276 |
. . . . . 6
|
| 36 | 11, 19, 35 | 3eltr3d 2290 |
. . . . 5
|
| 37 | reueq 2979 |
. . . . 5
| |
| 38 | 36, 37 | sylib 122 |
. . . 4
|
| 39 | 15 | adantr 276 |
. . . . . . . 8
|
| 40 | 39 | recnd 8136 |
. . . . . . 7
|
| 41 | simpll3 1041 |
. . . . . . . 8
| |
| 42 | 41 | recnd 8136 |
. . . . . . 7
|
| 43 | simpl1 1003 |
. . . . . . . . . 10
| |
| 44 | simpl2 1004 |
. . . . . . . . . . 11
| |
| 45 | 44 | rexrd 8157 |
. . . . . . . . . 10
|
| 46 | icossre 10111 |
. . . . . . . . . 10
| |
| 47 | 43, 45, 46 | syl2anc 411 |
. . . . . . . . 9
|
| 48 | 47 | sselda 3201 |
. . . . . . . 8
|
| 49 | 48 | recnd 8136 |
. . . . . . 7
|
| 50 | 40, 42, 49 | subadd2d 8437 |
. . . . . 6
|
| 51 | eqcom 2209 |
. . . . . 6
| |
| 52 | eqcom 2209 |
. . . . . 6
| |
| 53 | 50, 51, 52 | 3bitr4g 223 |
. . . . 5
|
| 54 | 53 | reubidva 2692 |
. . . 4
|
| 55 | 38, 54 | mpbid 147 |
. . 3
|
| 56 | 55 | ralrimiva 2581 |
. 2
|
| 57 | icoshftf1o.1 |
. . 3
| |
| 58 | 57 | f1ompt 5754 |
. 2
|
| 59 | 2, 56, 58 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-ico 10051 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |