ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icoshftf1o Unicode version

Theorem icoshftf1o 9948
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
Assertion
Ref Expression
icoshftf1o  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Distinct variable groups:    x, A    x, B    x, C
Allowed substitution hint:    F( x)

Proof of Theorem icoshftf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 icoshft 9947 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
x  e.  ( A [,) B )  -> 
( x  +  C
)  e.  ( ( A  +  C ) [,) ( B  +  C ) ) ) )
21ralrimiv 2542 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) )
3 readdcl 7900 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
433adant2 1011 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
5 readdcl 7900 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
653adant1 1010 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
7 renegcl 8180 . . . . . . . . 9  |-  ( C  e.  RR  ->  -u C  e.  RR )
873ad2ant3 1015 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  -u C  e.  RR )
9 icoshft 9947 . . . . . . . 8  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR  /\  -u C  e.  RR )  ->  ( y  e.  ( ( A  +  C ) [,) ( B  +  C )
)  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) ) )
104, 6, 8, 9syl3anc 1233 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
y  e.  ( ( A  +  C ) [,) ( B  +  C ) )  -> 
( y  +  -u C )  e.  ( ( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) ) ) )
1110imp 123 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) )
126rexrd 7969 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR* )
13 icossre 9911 . . . . . . . . . 10  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR* )  ->  ( ( A  +  C ) [,) ( B  +  C )
)  C_  RR )
144, 12, 13syl2anc 409 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
) [,) ( B  +  C ) ) 
C_  RR )
1514sselda 3147 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  RR )
1615recnd 7948 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  CC )
17 simpl3 997 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  RR )
1817recnd 7948 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  CC )
1916, 18negsubd 8236 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  =  ( y  -  C
) )
204recnd 7948 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  CC )
21 simp3 994 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
2221recnd 7948 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  CC )
2320, 22negsubd 8236 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  ( ( A  +  C )  -  C ) )
24 simp1 992 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2524recnd 7948 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  CC )
2625, 22pncand 8231 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  -  C )  =  A )
2723, 26eqtrd 2203 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  A )
286recnd 7948 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  CC )
2928, 22negsubd 8236 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  ( ( B  +  C )  -  C ) )
30 simp2 993 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3130recnd 7948 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  CC )
3231, 22pncand 8231 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  -  C )  =  B )
3329, 32eqtrd 2203 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  B )
3427, 33oveq12d 5871 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) )  =  ( A [,) B ) )
3534adantr 274 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( (
( A  +  C
)  +  -u C
) [,) ( ( B  +  C )  +  -u C ) )  =  ( A [,) B ) )
3611, 19, 353eltr3d 2253 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  -  C )  e.  ( A [,) B ) )
37 reueq 2929 . . . . 5  |-  ( ( y  -  C )  e.  ( A [,) B )  <->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3836, 37sylib 121 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3915adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  RR )
4039recnd 7948 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  CC )
41 simpll3 1033 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  RR )
4241recnd 7948 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  CC )
43 simpl1 995 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  A  e.  RR )
44 simpl2 996 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR )
4544rexrd 7969 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR* )
46 icossre 9911 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A [,) B
)  C_  RR )
4743, 45, 46syl2anc 409 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( A [,) B )  C_  RR )
4847sselda 3147 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  RR )
4948recnd 7948 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  CC )
5040, 42, 49subadd2d 8249 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
( y  -  C
)  =  x  <->  ( x  +  C )  =  y ) )
51 eqcom 2172 . . . . . 6  |-  ( x  =  ( y  -  C )  <->  ( y  -  C )  =  x )
52 eqcom 2172 . . . . . 6  |-  ( y  =  ( x  +  C )  <->  ( x  +  C )  =  y )
5350, 51, 523bitr4g 222 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
x  =  ( y  -  C )  <->  y  =  ( x  +  C
) ) )
5453reubidva 2652 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( E! x  e.  ( A [,) B ) x  =  ( y  -  C
)  <->  E! x  e.  ( A [,) B ) y  =  ( x  +  C ) ) )
5538, 54mpbid 146 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
5655ralrimiva 2543 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
57 icoshftf1o.1 . . 3  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
5857f1ompt 5647 . 2  |-  ( F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
)  <->  ( A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) )  /\  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) ) )
592, 56, 58sylanbrc 415 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E!wreu 2450    C_ wss 3121    |-> cmpt 4050   -1-1-onto->wf1o 5197  (class class class)co 5853   RRcr 7773    + caddc 7777   RR*cxr 7953    - cmin 8090   -ucneg 8091   [,)cico 9847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-ico 9851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator