ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icoshftf1o Unicode version

Theorem icoshftf1o 9991
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
Assertion
Ref Expression
icoshftf1o  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Distinct variable groups:    x, A    x, B    x, C
Allowed substitution hint:    F( x)

Proof of Theorem icoshftf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 icoshft 9990 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
x  e.  ( A [,) B )  -> 
( x  +  C
)  e.  ( ( A  +  C ) [,) ( B  +  C ) ) ) )
21ralrimiv 2549 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) )
3 readdcl 7937 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
433adant2 1016 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
5 readdcl 7937 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
653adant1 1015 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
7 renegcl 8218 . . . . . . . . 9  |-  ( C  e.  RR  ->  -u C  e.  RR )
873ad2ant3 1020 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  -u C  e.  RR )
9 icoshft 9990 . . . . . . . 8  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR  /\  -u C  e.  RR )  ->  ( y  e.  ( ( A  +  C ) [,) ( B  +  C )
)  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) ) )
104, 6, 8, 9syl3anc 1238 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
y  e.  ( ( A  +  C ) [,) ( B  +  C ) )  -> 
( y  +  -u C )  e.  ( ( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) ) ) )
1110imp 124 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) )
126rexrd 8007 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR* )
13 icossre 9954 . . . . . . . . . 10  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR* )  ->  ( ( A  +  C ) [,) ( B  +  C )
)  C_  RR )
144, 12, 13syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
) [,) ( B  +  C ) ) 
C_  RR )
1514sselda 3156 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  RR )
1615recnd 7986 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  CC )
17 simpl3 1002 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  RR )
1817recnd 7986 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  CC )
1916, 18negsubd 8274 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  =  ( y  -  C
) )
204recnd 7986 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  CC )
21 simp3 999 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
2221recnd 7986 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  CC )
2320, 22negsubd 8274 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  ( ( A  +  C )  -  C ) )
24 simp1 997 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2524recnd 7986 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  CC )
2625, 22pncand 8269 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  -  C )  =  A )
2723, 26eqtrd 2210 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  A )
286recnd 7986 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  CC )
2928, 22negsubd 8274 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  ( ( B  +  C )  -  C ) )
30 simp2 998 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3130recnd 7986 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  CC )
3231, 22pncand 8269 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  -  C )  =  B )
3329, 32eqtrd 2210 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  B )
3427, 33oveq12d 5893 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) )  =  ( A [,) B ) )
3534adantr 276 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( (
( A  +  C
)  +  -u C
) [,) ( ( B  +  C )  +  -u C ) )  =  ( A [,) B ) )
3611, 19, 353eltr3d 2260 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  -  C )  e.  ( A [,) B ) )
37 reueq 2937 . . . . 5  |-  ( ( y  -  C )  e.  ( A [,) B )  <->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3836, 37sylib 122 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3915adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  RR )
4039recnd 7986 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  CC )
41 simpll3 1038 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  RR )
4241recnd 7986 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  CC )
43 simpl1 1000 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  A  e.  RR )
44 simpl2 1001 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR )
4544rexrd 8007 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR* )
46 icossre 9954 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A [,) B
)  C_  RR )
4743, 45, 46syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( A [,) B )  C_  RR )
4847sselda 3156 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  RR )
4948recnd 7986 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  CC )
5040, 42, 49subadd2d 8287 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
( y  -  C
)  =  x  <->  ( x  +  C )  =  y ) )
51 eqcom 2179 . . . . . 6  |-  ( x  =  ( y  -  C )  <->  ( y  -  C )  =  x )
52 eqcom 2179 . . . . . 6  |-  ( y  =  ( x  +  C )  <->  ( x  +  C )  =  y )
5350, 51, 523bitr4g 223 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
x  =  ( y  -  C )  <->  y  =  ( x  +  C
) ) )
5453reubidva 2660 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( E! x  e.  ( A [,) B ) x  =  ( y  -  C
)  <->  E! x  e.  ( A [,) B ) y  =  ( x  +  C ) ) )
5538, 54mpbid 147 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
5655ralrimiva 2550 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
57 icoshftf1o.1 . . 3  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
5857f1ompt 5668 . 2  |-  ( F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
)  <->  ( A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) )  /\  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) ) )
592, 56, 58sylanbrc 417 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E!wreu 2457    C_ wss 3130    |-> cmpt 4065   -1-1-onto->wf1o 5216  (class class class)co 5875   RRcr 7810    + caddc 7814   RR*cxr 7991    - cmin 8128   -ucneg 8129   [,)cico 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-ico 9894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator