Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > icoshftf1o | Unicode version |
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
icoshftf1o.1 |
Ref | Expression |
---|---|
icoshftf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoshft 9947 | . . 3 | |
2 | 1 | ralrimiv 2542 | . 2 |
3 | readdcl 7900 | . . . . . . . . 9 | |
4 | 3 | 3adant2 1011 | . . . . . . . 8 |
5 | readdcl 7900 | . . . . . . . . 9 | |
6 | 5 | 3adant1 1010 | . . . . . . . 8 |
7 | renegcl 8180 | . . . . . . . . 9 | |
8 | 7 | 3ad2ant3 1015 | . . . . . . . 8 |
9 | icoshft 9947 | . . . . . . . 8 | |
10 | 4, 6, 8, 9 | syl3anc 1233 | . . . . . . 7 |
11 | 10 | imp 123 | . . . . . 6 |
12 | 6 | rexrd 7969 | . . . . . . . . . 10 |
13 | icossre 9911 | . . . . . . . . . 10 | |
14 | 4, 12, 13 | syl2anc 409 | . . . . . . . . 9 |
15 | 14 | sselda 3147 | . . . . . . . 8 |
16 | 15 | recnd 7948 | . . . . . . 7 |
17 | simpl3 997 | . . . . . . . 8 | |
18 | 17 | recnd 7948 | . . . . . . 7 |
19 | 16, 18 | negsubd 8236 | . . . . . 6 |
20 | 4 | recnd 7948 | . . . . . . . . . 10 |
21 | simp3 994 | . . . . . . . . . . 11 | |
22 | 21 | recnd 7948 | . . . . . . . . . 10 |
23 | 20, 22 | negsubd 8236 | . . . . . . . . 9 |
24 | simp1 992 | . . . . . . . . . . 11 | |
25 | 24 | recnd 7948 | . . . . . . . . . 10 |
26 | 25, 22 | pncand 8231 | . . . . . . . . 9 |
27 | 23, 26 | eqtrd 2203 | . . . . . . . 8 |
28 | 6 | recnd 7948 | . . . . . . . . . 10 |
29 | 28, 22 | negsubd 8236 | . . . . . . . . 9 |
30 | simp2 993 | . . . . . . . . . . 11 | |
31 | 30 | recnd 7948 | . . . . . . . . . 10 |
32 | 31, 22 | pncand 8231 | . . . . . . . . 9 |
33 | 29, 32 | eqtrd 2203 | . . . . . . . 8 |
34 | 27, 33 | oveq12d 5871 | . . . . . . 7 |
35 | 34 | adantr 274 | . . . . . 6 |
36 | 11, 19, 35 | 3eltr3d 2253 | . . . . 5 |
37 | reueq 2929 | . . . . 5 | |
38 | 36, 37 | sylib 121 | . . . 4 |
39 | 15 | adantr 274 | . . . . . . . 8 |
40 | 39 | recnd 7948 | . . . . . . 7 |
41 | simpll3 1033 | . . . . . . . 8 | |
42 | 41 | recnd 7948 | . . . . . . 7 |
43 | simpl1 995 | . . . . . . . . . 10 | |
44 | simpl2 996 | . . . . . . . . . . 11 | |
45 | 44 | rexrd 7969 | . . . . . . . . . 10 |
46 | icossre 9911 | . . . . . . . . . 10 | |
47 | 43, 45, 46 | syl2anc 409 | . . . . . . . . 9 |
48 | 47 | sselda 3147 | . . . . . . . 8 |
49 | 48 | recnd 7948 | . . . . . . 7 |
50 | 40, 42, 49 | subadd2d 8249 | . . . . . 6 |
51 | eqcom 2172 | . . . . . 6 | |
52 | eqcom 2172 | . . . . . 6 | |
53 | 50, 51, 52 | 3bitr4g 222 | . . . . 5 |
54 | 53 | reubidva 2652 | . . . 4 |
55 | 38, 54 | mpbid 146 | . . 3 |
56 | 55 | ralrimiva 2543 | . 2 |
57 | icoshftf1o.1 | . . 3 | |
58 | 57 | f1ompt 5647 | . 2 |
59 | 2, 56, 58 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wreu 2450 wss 3121 cmpt 4050 wf1o 5197 (class class class)co 5853 cr 7773 caddc 7777 cxr 7953 cmin 8090 cneg 8091 cico 9847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-ico 9851 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |