Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > icoshftf1o | Unicode version |
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
icoshftf1o.1 |
Ref | Expression |
---|---|
icoshftf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoshft 9926 | . . 3 | |
2 | 1 | ralrimiv 2538 | . 2 |
3 | readdcl 7879 | . . . . . . . . 9 | |
4 | 3 | 3adant2 1006 | . . . . . . . 8 |
5 | readdcl 7879 | . . . . . . . . 9 | |
6 | 5 | 3adant1 1005 | . . . . . . . 8 |
7 | renegcl 8159 | . . . . . . . . 9 | |
8 | 7 | 3ad2ant3 1010 | . . . . . . . 8 |
9 | icoshft 9926 | . . . . . . . 8 | |
10 | 4, 6, 8, 9 | syl3anc 1228 | . . . . . . 7 |
11 | 10 | imp 123 | . . . . . 6 |
12 | 6 | rexrd 7948 | . . . . . . . . . 10 |
13 | icossre 9890 | . . . . . . . . . 10 | |
14 | 4, 12, 13 | syl2anc 409 | . . . . . . . . 9 |
15 | 14 | sselda 3142 | . . . . . . . 8 |
16 | 15 | recnd 7927 | . . . . . . 7 |
17 | simpl3 992 | . . . . . . . 8 | |
18 | 17 | recnd 7927 | . . . . . . 7 |
19 | 16, 18 | negsubd 8215 | . . . . . 6 |
20 | 4 | recnd 7927 | . . . . . . . . . 10 |
21 | simp3 989 | . . . . . . . . . . 11 | |
22 | 21 | recnd 7927 | . . . . . . . . . 10 |
23 | 20, 22 | negsubd 8215 | . . . . . . . . 9 |
24 | simp1 987 | . . . . . . . . . . 11 | |
25 | 24 | recnd 7927 | . . . . . . . . . 10 |
26 | 25, 22 | pncand 8210 | . . . . . . . . 9 |
27 | 23, 26 | eqtrd 2198 | . . . . . . . 8 |
28 | 6 | recnd 7927 | . . . . . . . . . 10 |
29 | 28, 22 | negsubd 8215 | . . . . . . . . 9 |
30 | simp2 988 | . . . . . . . . . . 11 | |
31 | 30 | recnd 7927 | . . . . . . . . . 10 |
32 | 31, 22 | pncand 8210 | . . . . . . . . 9 |
33 | 29, 32 | eqtrd 2198 | . . . . . . . 8 |
34 | 27, 33 | oveq12d 5860 | . . . . . . 7 |
35 | 34 | adantr 274 | . . . . . 6 |
36 | 11, 19, 35 | 3eltr3d 2249 | . . . . 5 |
37 | reueq 2925 | . . . . 5 | |
38 | 36, 37 | sylib 121 | . . . 4 |
39 | 15 | adantr 274 | . . . . . . . 8 |
40 | 39 | recnd 7927 | . . . . . . 7 |
41 | simpll3 1028 | . . . . . . . 8 | |
42 | 41 | recnd 7927 | . . . . . . 7 |
43 | simpl1 990 | . . . . . . . . . 10 | |
44 | simpl2 991 | . . . . . . . . . . 11 | |
45 | 44 | rexrd 7948 | . . . . . . . . . 10 |
46 | icossre 9890 | . . . . . . . . . 10 | |
47 | 43, 45, 46 | syl2anc 409 | . . . . . . . . 9 |
48 | 47 | sselda 3142 | . . . . . . . 8 |
49 | 48 | recnd 7927 | . . . . . . 7 |
50 | 40, 42, 49 | subadd2d 8228 | . . . . . 6 |
51 | eqcom 2167 | . . . . . 6 | |
52 | eqcom 2167 | . . . . . 6 | |
53 | 50, 51, 52 | 3bitr4g 222 | . . . . 5 |
54 | 53 | reubidva 2648 | . . . 4 |
55 | 38, 54 | mpbid 146 | . . 3 |
56 | 55 | ralrimiva 2539 | . 2 |
57 | icoshftf1o.1 | . . 3 | |
58 | 57 | f1ompt 5636 | . 2 |
59 | 2, 56, 58 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 wreu 2446 wss 3116 cmpt 4043 wf1o 5187 (class class class)co 5842 cr 7752 caddc 7756 cxr 7932 cmin 8069 cneg 8070 cico 9826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-ico 9830 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |