| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > icoshftf1o | Unicode version | ||
| Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| icoshftf1o.1 |
|
| Ref | Expression |
|---|---|
| icoshftf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoshft 10112 |
. . 3
| |
| 2 | 1 | ralrimiv 2578 |
. 2
|
| 3 | readdcl 8051 |
. . . . . . . . 9
| |
| 4 | 3 | 3adant2 1019 |
. . . . . . . 8
|
| 5 | readdcl 8051 |
. . . . . . . . 9
| |
| 6 | 5 | 3adant1 1018 |
. . . . . . . 8
|
| 7 | renegcl 8333 |
. . . . . . . . 9
| |
| 8 | 7 | 3ad2ant3 1023 |
. . . . . . . 8
|
| 9 | icoshft 10112 |
. . . . . . . 8
| |
| 10 | 4, 6, 8, 9 | syl3anc 1250 |
. . . . . . 7
|
| 11 | 10 | imp 124 |
. . . . . 6
|
| 12 | 6 | rexrd 8122 |
. . . . . . . . . 10
|
| 13 | icossre 10076 |
. . . . . . . . . 10
| |
| 14 | 4, 12, 13 | syl2anc 411 |
. . . . . . . . 9
|
| 15 | 14 | sselda 3193 |
. . . . . . . 8
|
| 16 | 15 | recnd 8101 |
. . . . . . 7
|
| 17 | simpl3 1005 |
. . . . . . . 8
| |
| 18 | 17 | recnd 8101 |
. . . . . . 7
|
| 19 | 16, 18 | negsubd 8389 |
. . . . . 6
|
| 20 | 4 | recnd 8101 |
. . . . . . . . . 10
|
| 21 | simp3 1002 |
. . . . . . . . . . 11
| |
| 22 | 21 | recnd 8101 |
. . . . . . . . . 10
|
| 23 | 20, 22 | negsubd 8389 |
. . . . . . . . 9
|
| 24 | simp1 1000 |
. . . . . . . . . . 11
| |
| 25 | 24 | recnd 8101 |
. . . . . . . . . 10
|
| 26 | 25, 22 | pncand 8384 |
. . . . . . . . 9
|
| 27 | 23, 26 | eqtrd 2238 |
. . . . . . . 8
|
| 28 | 6 | recnd 8101 |
. . . . . . . . . 10
|
| 29 | 28, 22 | negsubd 8389 |
. . . . . . . . 9
|
| 30 | simp2 1001 |
. . . . . . . . . . 11
| |
| 31 | 30 | recnd 8101 |
. . . . . . . . . 10
|
| 32 | 31, 22 | pncand 8384 |
. . . . . . . . 9
|
| 33 | 29, 32 | eqtrd 2238 |
. . . . . . . 8
|
| 34 | 27, 33 | oveq12d 5962 |
. . . . . . 7
|
| 35 | 34 | adantr 276 |
. . . . . 6
|
| 36 | 11, 19, 35 | 3eltr3d 2288 |
. . . . 5
|
| 37 | reueq 2972 |
. . . . 5
| |
| 38 | 36, 37 | sylib 122 |
. . . 4
|
| 39 | 15 | adantr 276 |
. . . . . . . 8
|
| 40 | 39 | recnd 8101 |
. . . . . . 7
|
| 41 | simpll3 1041 |
. . . . . . . 8
| |
| 42 | 41 | recnd 8101 |
. . . . . . 7
|
| 43 | simpl1 1003 |
. . . . . . . . . 10
| |
| 44 | simpl2 1004 |
. . . . . . . . . . 11
| |
| 45 | 44 | rexrd 8122 |
. . . . . . . . . 10
|
| 46 | icossre 10076 |
. . . . . . . . . 10
| |
| 47 | 43, 45, 46 | syl2anc 411 |
. . . . . . . . 9
|
| 48 | 47 | sselda 3193 |
. . . . . . . 8
|
| 49 | 48 | recnd 8101 |
. . . . . . 7
|
| 50 | 40, 42, 49 | subadd2d 8402 |
. . . . . 6
|
| 51 | eqcom 2207 |
. . . . . 6
| |
| 52 | eqcom 2207 |
. . . . . 6
| |
| 53 | 50, 51, 52 | 3bitr4g 223 |
. . . . 5
|
| 54 | 53 | reubidva 2689 |
. . . 4
|
| 55 | 38, 54 | mpbid 147 |
. . 3
|
| 56 | 55 | ralrimiva 2579 |
. 2
|
| 57 | icoshftf1o.1 |
. . 3
| |
| 58 | 57 | f1ompt 5731 |
. 2
|
| 59 | 2, 56, 58 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-ico 10016 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |