ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgb Unicode version

Theorem divalgb 12066
Description: Express the division algorithm as stated in divalg 12065 in terms of  ||. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgb  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalgb
StepHypRef Expression
1 df-3an 982 . . . . . . . . 9  |-  ( ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
21rexbii 2501 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( ( 0  <_  r  /\  r  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
3 r19.42v 2651 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
( 0  <_  r  /\  r  <  ( abs `  D ) )  /\  N  =  ( (
q  x.  D )  +  r ) )  <-> 
( ( 0  <_ 
r  /\  r  <  ( abs `  D ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
42, 3bitri 184 . . . . . . 7  |-  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  r ) ) )
5 zsubcl 9358 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( N  -  r
)  e.  ZZ )
6 divides 11932 . . . . . . . . . . . 12  |-  ( ( D  e.  ZZ  /\  ( N  -  r
)  e.  ZZ )  ->  ( D  ||  ( N  -  r
)  <->  E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r ) ) )
75, 6sylan2 286 . . . . . . . . . . 11  |-  ( ( D  e.  ZZ  /\  ( N  e.  ZZ  /\  r  e.  ZZ ) )  ->  ( D  ||  ( N  -  r
)  <->  E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r ) ) )
873impb 1201 . . . . . . . . . 10  |-  ( ( D  e.  ZZ  /\  N  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  ( q  x.  D )  =  ( N  -  r ) ) )
983com12 1209 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  ( q  x.  D )  =  ( N  -  r ) ) )
10 zcn 9322 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  N  e.  CC )
11 zcn 9322 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  ZZ  ->  r  e.  CC )
12 zmulcl 9370 . . . . . . . . . . . . . . . . . . 19  |-  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  ( q  x.  D
)  e.  ZZ )
1312zcnd 9440 . . . . . . . . . . . . . . . . . 18  |-  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  ( q  x.  D
)  e.  CC )
14 subadd 8222 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  CC  /\  r  e.  CC  /\  (
q  x.  D )  e.  CC )  -> 
( ( N  -  r )  =  ( q  x.  D )  <-> 
( r  +  ( q  x.  D ) )  =  N ) )
1510, 11, 13, 14syl3an 1291 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( ( N  -  r )  =  ( q  x.  D )  <->  ( r  +  ( q  x.  D ) )  =  N ) )
16 addcom 8156 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  CC  /\  ( q  x.  D
)  e.  CC )  ->  ( r  +  ( q  x.  D
) )  =  ( ( q  x.  D
)  +  r ) )
1711, 13, 16syl2an 289 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  e.  ZZ  /\  ( q  e.  ZZ  /\  D  e.  ZZ ) )  ->  ( r  +  ( q  x.  D ) )  =  ( ( q  x.  D )  +  r ) )
18173adant1 1017 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( r  +  ( q  x.  D ) )  =  ( ( q  x.  D )  +  r ) )
1918eqeq1d 2202 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( (
r  +  ( q  x.  D ) )  =  N  <->  ( (
q  x.  D )  +  r )  =  N ) )
2015, 19bitrd 188 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( ( N  -  r )  =  ( q  x.  D )  <->  ( (
q  x.  D )  +  r )  =  N ) )
21 eqcom 2195 . . . . . . . . . . . . . . . 16  |-  ( ( N  -  r )  =  ( q  x.  D )  <->  ( q  x.  D )  =  ( N  -  r ) )
22 eqcom 2195 . . . . . . . . . . . . . . . 16  |-  ( ( ( q  x.  D
)  +  r )  =  N  <->  N  =  ( ( q  x.  D )  +  r ) )
2320, 21, 223bitr3g 222 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( (
q  x.  D )  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) )
24233expia 1207 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  (
( q  x.  D
)  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) ) )
2524expcomd 1452 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  e.  ZZ  ->  ( q  e.  ZZ  ->  ( ( q  x.  D )  =  ( N  -  r )  <-> 
N  =  ( ( q  x.  D )  +  r ) ) ) ) )
26253impia 1202 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  ->  (
q  e.  ZZ  ->  ( ( q  x.  D
)  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) ) )
2726imp 124 . . . . . . . . . . 11  |-  ( ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  /\  q  e.  ZZ )  ->  ( ( q  x.  D )  =  ( N  -  r
)  <->  N  =  (
( q  x.  D
)  +  r ) ) )
2827rexbidva 2491 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  ->  ( E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
29283com23 1211 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
309, 29bitrd 188 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
3130anbi2d 464 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  (
( ( 0  <_ 
r  /\  r  <  ( abs `  D ) )  /\  D  ||  ( N  -  r
) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  r ) ) ) )
324, 31bitr4id 199 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  D  ||  ( N  -  r
) ) ) )
33 anass 401 . . . . . 6  |-  ( ( ( 0  <_  r  /\  r  <  ( abs `  D ) )  /\  D  ||  ( N  -  r ) )  <->  ( 0  <_  r  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) )
3432, 33bitrdi 196 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  r  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) ) )
35343expa 1205 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ )  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  ( 0  <_ 
r  /\  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) ) ) )
3635reubidva 2677 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E! r  e.  ZZ  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
37 elnn0z 9330 . . . . . . 7  |-  ( r  e.  NN0  <->  ( r  e.  ZZ  /\  0  <_ 
r ) )
3837anbi1i 458 . . . . . 6  |-  ( ( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( ( r  e.  ZZ  /\  0  <_ 
r )  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) )
39 anass 401 . . . . . 6  |-  ( ( ( r  e.  ZZ  /\  0  <_  r )  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4038, 39bitri 184 . . . . 5  |-  ( ( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4140eubii 2051 . . . 4  |-  ( E! r ( r  e. 
NN0  /\  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) )  <->  E! r
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
42 df-reu 2479 . . . 4  |-  ( E! r  e.  NN0  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) )  <->  E! r
( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) )
43 df-reu 2479 . . . 4  |-  ( E! r  e.  ZZ  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
E! r ( r  e.  ZZ  /\  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4441, 42, 433bitr4ri 213 . . 3  |-  ( E! r  e.  ZZ  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )
4536, 44bitrdi 196 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) )
46453adant3 1019 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E!weu 2042    e. wcel 2164    =/= wne 2364   E.wrex 2473   E!wreu 2474   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   NN0cn0 9240   ZZcz 9317   abscabs 11141    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-dvds 11931
This theorem is referenced by:  divalg2  12067
  Copyright terms: Public domain W3C validator