Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divalgb | Unicode version |
Description: Express the division algorithm as stated in divalg 11807 in terms of . (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
divalgb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 965 | . . . . . . . . 9 | |
2 | 1 | rexbii 2464 | . . . . . . . 8 |
3 | r19.42v 2614 | . . . . . . . 8 | |
4 | 2, 3 | bitri 183 | . . . . . . 7 |
5 | zsubcl 9202 | . . . . . . . . . . . 12 | |
6 | divides 11678 | . . . . . . . . . . . 12 | |
7 | 5, 6 | sylan2 284 | . . . . . . . . . . 11 |
8 | 7 | 3impb 1181 | . . . . . . . . . 10 |
9 | 8 | 3com12 1189 | . . . . . . . . 9 |
10 | zcn 9166 | . . . . . . . . . . . . . . . . . 18 | |
11 | zcn 9166 | . . . . . . . . . . . . . . . . . 18 | |
12 | zmulcl 9214 | . . . . . . . . . . . . . . . . . . 19 | |
13 | 12 | zcnd 9281 | . . . . . . . . . . . . . . . . . 18 |
14 | subadd 8072 | . . . . . . . . . . . . . . . . . 18 | |
15 | 10, 11, 13, 14 | syl3an 1262 | . . . . . . . . . . . . . . . . 17 |
16 | addcom 8006 | . . . . . . . . . . . . . . . . . . . 20 | |
17 | 11, 13, 16 | syl2an 287 | . . . . . . . . . . . . . . . . . . 19 |
18 | 17 | 3adant1 1000 | . . . . . . . . . . . . . . . . . 18 |
19 | 18 | eqeq1d 2166 | . . . . . . . . . . . . . . . . 17 |
20 | 15, 19 | bitrd 187 | . . . . . . . . . . . . . . . 16 |
21 | eqcom 2159 | . . . . . . . . . . . . . . . 16 | |
22 | eqcom 2159 | . . . . . . . . . . . . . . . 16 | |
23 | 20, 21, 22 | 3bitr3g 221 | . . . . . . . . . . . . . . 15 |
24 | 23 | 3expia 1187 | . . . . . . . . . . . . . 14 |
25 | 24 | expcomd 1421 | . . . . . . . . . . . . 13 |
26 | 25 | 3impia 1182 | . . . . . . . . . . . 12 |
27 | 26 | imp 123 | . . . . . . . . . . 11 |
28 | 27 | rexbidva 2454 | . . . . . . . . . 10 |
29 | 28 | 3com23 1191 | . . . . . . . . 9 |
30 | 9, 29 | bitrd 187 | . . . . . . . 8 |
31 | 30 | anbi2d 460 | . . . . . . 7 |
32 | 4, 31 | bitr4id 198 | . . . . . 6 |
33 | anass 399 | . . . . . 6 | |
34 | 32, 33 | bitrdi 195 | . . . . 5 |
35 | 34 | 3expa 1185 | . . . 4 |
36 | 35 | reubidva 2639 | . . 3 |
37 | elnn0z 9174 | . . . . . . 7 | |
38 | 37 | anbi1i 454 | . . . . . 6 |
39 | anass 399 | . . . . . 6 | |
40 | 38, 39 | bitri 183 | . . . . 5 |
41 | 40 | eubii 2015 | . . . 4 |
42 | df-reu 2442 | . . . 4 | |
43 | df-reu 2442 | . . . 4 | |
44 | 41, 42, 43 | 3bitr4ri 212 | . . 3 |
45 | 36, 44 | bitrdi 195 | . 2 |
46 | 45 | 3adant3 1002 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 weu 2006 wcel 2128 wne 2327 wrex 2436 wreu 2437 class class class wbr 3965 cfv 5169 (class class class)co 5821 cc 7724 cc0 7726 caddc 7729 cmul 7731 clt 7906 cle 7907 cmin 8040 cn0 9084 cz 9161 cabs 10890 cdvds 11676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-n0 9085 df-z 9162 df-dvds 11677 |
This theorem is referenced by: divalg2 11809 |
Copyright terms: Public domain | W3C validator |