ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgb Unicode version

Theorem divalgb 11808
Description: Express the division algorithm as stated in divalg 11807 in terms of  ||. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgb  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalgb
StepHypRef Expression
1 df-3an 965 . . . . . . . . 9  |-  ( ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
21rexbii 2464 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( ( 0  <_  r  /\  r  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
3 r19.42v 2614 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
( 0  <_  r  /\  r  <  ( abs `  D ) )  /\  N  =  ( (
q  x.  D )  +  r ) )  <-> 
( ( 0  <_ 
r  /\  r  <  ( abs `  D ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
42, 3bitri 183 . . . . . . 7  |-  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  r ) ) )
5 zsubcl 9202 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( N  -  r
)  e.  ZZ )
6 divides 11678 . . . . . . . . . . . 12  |-  ( ( D  e.  ZZ  /\  ( N  -  r
)  e.  ZZ )  ->  ( D  ||  ( N  -  r
)  <->  E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r ) ) )
75, 6sylan2 284 . . . . . . . . . . 11  |-  ( ( D  e.  ZZ  /\  ( N  e.  ZZ  /\  r  e.  ZZ ) )  ->  ( D  ||  ( N  -  r
)  <->  E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r ) ) )
873impb 1181 . . . . . . . . . 10  |-  ( ( D  e.  ZZ  /\  N  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  ( q  x.  D )  =  ( N  -  r ) ) )
983com12 1189 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  ( q  x.  D )  =  ( N  -  r ) ) )
10 zcn 9166 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  N  e.  CC )
11 zcn 9166 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  ZZ  ->  r  e.  CC )
12 zmulcl 9214 . . . . . . . . . . . . . . . . . . 19  |-  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  ( q  x.  D
)  e.  ZZ )
1312zcnd 9281 . . . . . . . . . . . . . . . . . 18  |-  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  ( q  x.  D
)  e.  CC )
14 subadd 8072 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  CC  /\  r  e.  CC  /\  (
q  x.  D )  e.  CC )  -> 
( ( N  -  r )  =  ( q  x.  D )  <-> 
( r  +  ( q  x.  D ) )  =  N ) )
1510, 11, 13, 14syl3an 1262 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( ( N  -  r )  =  ( q  x.  D )  <->  ( r  +  ( q  x.  D ) )  =  N ) )
16 addcom 8006 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  CC  /\  ( q  x.  D
)  e.  CC )  ->  ( r  +  ( q  x.  D
) )  =  ( ( q  x.  D
)  +  r ) )
1711, 13, 16syl2an 287 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  e.  ZZ  /\  ( q  e.  ZZ  /\  D  e.  ZZ ) )  ->  ( r  +  ( q  x.  D ) )  =  ( ( q  x.  D )  +  r ) )
18173adant1 1000 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( r  +  ( q  x.  D ) )  =  ( ( q  x.  D )  +  r ) )
1918eqeq1d 2166 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( (
r  +  ( q  x.  D ) )  =  N  <->  ( (
q  x.  D )  +  r )  =  N ) )
2015, 19bitrd 187 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( ( N  -  r )  =  ( q  x.  D )  <->  ( (
q  x.  D )  +  r )  =  N ) )
21 eqcom 2159 . . . . . . . . . . . . . . . 16  |-  ( ( N  -  r )  =  ( q  x.  D )  <->  ( q  x.  D )  =  ( N  -  r ) )
22 eqcom 2159 . . . . . . . . . . . . . . . 16  |-  ( ( ( q  x.  D
)  +  r )  =  N  <->  N  =  ( ( q  x.  D )  +  r ) )
2320, 21, 223bitr3g 221 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( (
q  x.  D )  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) )
24233expia 1187 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  (
( q  x.  D
)  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) ) )
2524expcomd 1421 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  e.  ZZ  ->  ( q  e.  ZZ  ->  ( ( q  x.  D )  =  ( N  -  r )  <-> 
N  =  ( ( q  x.  D )  +  r ) ) ) ) )
26253impia 1182 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  ->  (
q  e.  ZZ  ->  ( ( q  x.  D
)  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) ) )
2726imp 123 . . . . . . . . . . 11  |-  ( ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  /\  q  e.  ZZ )  ->  ( ( q  x.  D )  =  ( N  -  r
)  <->  N  =  (
( q  x.  D
)  +  r ) ) )
2827rexbidva 2454 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  ->  ( E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
29283com23 1191 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
309, 29bitrd 187 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
3130anbi2d 460 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  (
( ( 0  <_ 
r  /\  r  <  ( abs `  D ) )  /\  D  ||  ( N  -  r
) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  r ) ) ) )
324, 31bitr4id 198 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  D  ||  ( N  -  r
) ) ) )
33 anass 399 . . . . . 6  |-  ( ( ( 0  <_  r  /\  r  <  ( abs `  D ) )  /\  D  ||  ( N  -  r ) )  <->  ( 0  <_  r  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) )
3432, 33bitrdi 195 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  r  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) ) )
35343expa 1185 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ )  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  ( 0  <_ 
r  /\  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) ) ) )
3635reubidva 2639 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E! r  e.  ZZ  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
37 elnn0z 9174 . . . . . . 7  |-  ( r  e.  NN0  <->  ( r  e.  ZZ  /\  0  <_ 
r ) )
3837anbi1i 454 . . . . . 6  |-  ( ( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( ( r  e.  ZZ  /\  0  <_ 
r )  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) )
39 anass 399 . . . . . 6  |-  ( ( ( r  e.  ZZ  /\  0  <_  r )  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4038, 39bitri 183 . . . . 5  |-  ( ( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4140eubii 2015 . . . 4  |-  ( E! r ( r  e. 
NN0  /\  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) )  <->  E! r
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
42 df-reu 2442 . . . 4  |-  ( E! r  e.  NN0  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) )  <->  E! r
( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) )
43 df-reu 2442 . . . 4  |-  ( E! r  e.  ZZ  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
E! r ( r  e.  ZZ  /\  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4441, 42, 433bitr4ri 212 . . 3  |-  ( E! r  e.  ZZ  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )
4536, 44bitrdi 195 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) )
46453adant3 1002 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335   E!weu 2006    e. wcel 2128    =/= wne 2327   E.wrex 2436   E!wreu 2437   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   CCcc 7724   0cc0 7726    + caddc 7729    x. cmul 7731    < clt 7906    <_ cle 7907    - cmin 8040   NN0cn0 9084   ZZcz 9161   abscabs 10890    || cdvds 11676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-inn 8828  df-n0 9085  df-z 9162  df-dvds 11677
This theorem is referenced by:  divalg2  11809
  Copyright terms: Public domain W3C validator