Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divalgb | Unicode version |
Description: Express the division algorithm as stated in divalg 11861 in terms of . (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
divalgb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 970 | . . . . . . . . 9 | |
2 | 1 | rexbii 2473 | . . . . . . . 8 |
3 | r19.42v 2623 | . . . . . . . 8 | |
4 | 2, 3 | bitri 183 | . . . . . . 7 |
5 | zsubcl 9232 | . . . . . . . . . . . 12 | |
6 | divides 11729 | . . . . . . . . . . . 12 | |
7 | 5, 6 | sylan2 284 | . . . . . . . . . . 11 |
8 | 7 | 3impb 1189 | . . . . . . . . . 10 |
9 | 8 | 3com12 1197 | . . . . . . . . 9 |
10 | zcn 9196 | . . . . . . . . . . . . . . . . . 18 | |
11 | zcn 9196 | . . . . . . . . . . . . . . . . . 18 | |
12 | zmulcl 9244 | . . . . . . . . . . . . . . . . . . 19 | |
13 | 12 | zcnd 9314 | . . . . . . . . . . . . . . . . . 18 |
14 | subadd 8101 | . . . . . . . . . . . . . . . . . 18 | |
15 | 10, 11, 13, 14 | syl3an 1270 | . . . . . . . . . . . . . . . . 17 |
16 | addcom 8035 | . . . . . . . . . . . . . . . . . . . 20 | |
17 | 11, 13, 16 | syl2an 287 | . . . . . . . . . . . . . . . . . . 19 |
18 | 17 | 3adant1 1005 | . . . . . . . . . . . . . . . . . 18 |
19 | 18 | eqeq1d 2174 | . . . . . . . . . . . . . . . . 17 |
20 | 15, 19 | bitrd 187 | . . . . . . . . . . . . . . . 16 |
21 | eqcom 2167 | . . . . . . . . . . . . . . . 16 | |
22 | eqcom 2167 | . . . . . . . . . . . . . . . 16 | |
23 | 20, 21, 22 | 3bitr3g 221 | . . . . . . . . . . . . . . 15 |
24 | 23 | 3expia 1195 | . . . . . . . . . . . . . 14 |
25 | 24 | expcomd 1429 | . . . . . . . . . . . . 13 |
26 | 25 | 3impia 1190 | . . . . . . . . . . . 12 |
27 | 26 | imp 123 | . . . . . . . . . . 11 |
28 | 27 | rexbidva 2463 | . . . . . . . . . 10 |
29 | 28 | 3com23 1199 | . . . . . . . . 9 |
30 | 9, 29 | bitrd 187 | . . . . . . . 8 |
31 | 30 | anbi2d 460 | . . . . . . 7 |
32 | 4, 31 | bitr4id 198 | . . . . . 6 |
33 | anass 399 | . . . . . 6 | |
34 | 32, 33 | bitrdi 195 | . . . . 5 |
35 | 34 | 3expa 1193 | . . . 4 |
36 | 35 | reubidva 2648 | . . 3 |
37 | elnn0z 9204 | . . . . . . 7 | |
38 | 37 | anbi1i 454 | . . . . . 6 |
39 | anass 399 | . . . . . 6 | |
40 | 38, 39 | bitri 183 | . . . . 5 |
41 | 40 | eubii 2023 | . . . 4 |
42 | df-reu 2451 | . . . 4 | |
43 | df-reu 2451 | . . . 4 | |
44 | 41, 42, 43 | 3bitr4ri 212 | . . 3 |
45 | 36, 44 | bitrdi 195 | . 2 |
46 | 45 | 3adant3 1007 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 weu 2014 wcel 2136 wne 2336 wrex 2445 wreu 2446 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc 7751 cc0 7753 caddc 7756 cmul 7758 clt 7933 cle 7934 cmin 8069 cn0 9114 cz 9191 cabs 10939 cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-dvds 11728 |
This theorem is referenced by: divalg2 11863 |
Copyright terms: Public domain | W3C validator |