ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgb Unicode version

Theorem divalgb 12436
Description: Express the division algorithm as stated in divalg 12435 in terms of  ||. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
divalgb  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
Distinct variable groups:    D, q, r    N, q, r

Proof of Theorem divalgb
StepHypRef Expression
1 df-3an 1004 . . . . . . . . 9  |-  ( ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
21rexbii 2537 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E. q  e.  ZZ  ( ( 0  <_  r  /\  r  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  r ) ) )
3 r19.42v 2688 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
( 0  <_  r  /\  r  <  ( abs `  D ) )  /\  N  =  ( (
q  x.  D )  +  r ) )  <-> 
( ( 0  <_ 
r  /\  r  <  ( abs `  D ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
42, 3bitri 184 . . . . . . 7  |-  ( E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  r ) ) )
5 zsubcl 9487 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( N  -  r
)  e.  ZZ )
6 divides 12300 . . . . . . . . . . . 12  |-  ( ( D  e.  ZZ  /\  ( N  -  r
)  e.  ZZ )  ->  ( D  ||  ( N  -  r
)  <->  E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r ) ) )
75, 6sylan2 286 . . . . . . . . . . 11  |-  ( ( D  e.  ZZ  /\  ( N  e.  ZZ  /\  r  e.  ZZ ) )  ->  ( D  ||  ( N  -  r
)  <->  E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r ) ) )
873impb 1223 . . . . . . . . . 10  |-  ( ( D  e.  ZZ  /\  N  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  ( q  x.  D )  =  ( N  -  r ) ) )
983com12 1231 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  ( q  x.  D )  =  ( N  -  r ) ) )
10 zcn 9451 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  ZZ  ->  N  e.  CC )
11 zcn 9451 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  ZZ  ->  r  e.  CC )
12 zmulcl 9500 . . . . . . . . . . . . . . . . . . 19  |-  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  ( q  x.  D
)  e.  ZZ )
1312zcnd 9570 . . . . . . . . . . . . . . . . . 18  |-  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  ( q  x.  D
)  e.  CC )
14 subadd 8349 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  CC  /\  r  e.  CC  /\  (
q  x.  D )  e.  CC )  -> 
( ( N  -  r )  =  ( q  x.  D )  <-> 
( r  +  ( q  x.  D ) )  =  N ) )
1510, 11, 13, 14syl3an 1313 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( ( N  -  r )  =  ( q  x.  D )  <->  ( r  +  ( q  x.  D ) )  =  N ) )
16 addcom 8283 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  CC  /\  ( q  x.  D
)  e.  CC )  ->  ( r  +  ( q  x.  D
) )  =  ( ( q  x.  D
)  +  r ) )
1711, 13, 16syl2an 289 . . . . . . . . . . . . . . . . . . 19  |-  ( ( r  e.  ZZ  /\  ( q  e.  ZZ  /\  D  e.  ZZ ) )  ->  ( r  +  ( q  x.  D ) )  =  ( ( q  x.  D )  +  r ) )
18173adant1 1039 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( r  +  ( q  x.  D ) )  =  ( ( q  x.  D )  +  r ) )
1918eqeq1d 2238 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( (
r  +  ( q  x.  D ) )  =  N  <->  ( (
q  x.  D )  +  r )  =  N ) )
2015, 19bitrd 188 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( ( N  -  r )  =  ( q  x.  D )  <->  ( (
q  x.  D )  +  r )  =  N ) )
21 eqcom 2231 . . . . . . . . . . . . . . . 16  |-  ( ( N  -  r )  =  ( q  x.  D )  <->  ( q  x.  D )  =  ( N  -  r ) )
22 eqcom 2231 . . . . . . . . . . . . . . . 16  |-  ( ( ( q  x.  D
)  +  r )  =  N  <->  N  =  ( ( q  x.  D )  +  r ) )
2320, 21, 223bitr3g 222 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  (
q  e.  ZZ  /\  D  e.  ZZ )
)  ->  ( (
q  x.  D )  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) )
24233expia 1229 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( ( q  e.  ZZ  /\  D  e.  ZZ )  ->  (
( q  x.  D
)  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) ) )
2524expcomd 1484 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  e.  ZZ  ->  ( q  e.  ZZ  ->  ( ( q  x.  D )  =  ( N  -  r )  <-> 
N  =  ( ( q  x.  D )  +  r ) ) ) ) )
26253impia 1224 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  ->  (
q  e.  ZZ  ->  ( ( q  x.  D
)  =  ( N  -  r )  <->  N  =  ( ( q  x.  D )  +  r ) ) ) )
2726imp 124 . . . . . . . . . . 11  |-  ( ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  /\  q  e.  ZZ )  ->  ( ( q  x.  D )  =  ( N  -  r
)  <->  N  =  (
( q  x.  D
)  +  r ) ) )
2827rexbidva 2527 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  r  e.  ZZ  /\  D  e.  ZZ )  ->  ( E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
29283com23 1233 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( q  x.  D
)  =  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
309, 29bitrd 188 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( D  ||  ( N  -  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  r ) ) )
3130anbi2d 464 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  (
( ( 0  <_ 
r  /\  r  <  ( abs `  D ) )  /\  D  ||  ( N  -  r
) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  r ) ) ) )
324, 31bitr4id 199 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( (
0  <_  r  /\  r  <  ( abs `  D
) )  /\  D  ||  ( N  -  r
) ) ) )
33 anass 401 . . . . . 6  |-  ( ( ( 0  <_  r  /\  r  <  ( abs `  D ) )  /\  D  ||  ( N  -  r ) )  <->  ( 0  <_  r  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) )
3432, 33bitrdi 196 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  ( 0  <_  r  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) ) )
35343expa 1227 . . . 4  |-  ( ( ( N  e.  ZZ  /\  D  e.  ZZ )  /\  r  e.  ZZ )  ->  ( E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  ( 0  <_ 
r  /\  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) ) ) )
3635reubidva 2715 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E! r  e.  ZZ  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
37 elnn0z 9459 . . . . . . 7  |-  ( r  e.  NN0  <->  ( r  e.  ZZ  /\  0  <_ 
r ) )
3837anbi1i 458 . . . . . 6  |-  ( ( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( ( r  e.  ZZ  /\  0  <_ 
r )  /\  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) ) ) )
39 anass 401 . . . . . 6  |-  ( ( ( r  e.  ZZ  /\  0  <_  r )  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4038, 39bitri 184 . . . . 5  |-  ( ( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4140eubii 2086 . . . 4  |-  ( E! r ( r  e. 
NN0  /\  ( r  <  ( abs `  D
)  /\  D  ||  ( N  -  r )
) )  <->  E! r
( r  e.  ZZ  /\  ( 0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
42 df-reu 2515 . . . 4  |-  ( E! r  e.  NN0  (
r  <  ( abs `  D )  /\  D  ||  ( N  -  r
) )  <->  E! r
( r  e.  NN0  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) )
43 df-reu 2515 . . . 4  |-  ( E! r  e.  ZZ  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
E! r ( r  e.  ZZ  /\  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) ) )
4441, 42, 433bitr4ri 213 . . 3  |-  ( E! r  e.  ZZ  (
0  <_  r  /\  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )  <-> 
E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) )
4536, 44bitrdi 196 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )  <->  E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r ) ) ) )
46453adant3 1041 1  |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 )  ->  ( E! r  e.  ZZ  E. q  e.  ZZ  (
0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) )  <->  E! r  e.  NN0  ( r  < 
( abs `  D
)  /\  D  ||  ( N  -  r )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E!weu 2077    e. wcel 2200    =/= wne 2400   E.wrex 2509   E!wreu 2510   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999    + caddc 8002    x. cmul 8004    < clt 8181    <_ cle 8182    - cmin 8317   NN0cn0 9369   ZZcz 9446   abscabs 11508    || cdvds 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-dvds 12299
This theorem is referenced by:  divalg2  12437
  Copyright terms: Public domain W3C validator