ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofveu Unicode version

Theorem f1ofveu 5865
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
f1ofveu  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem f1ofveu
StepHypRef Expression
1 f1ocnv 5476 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
2 f1of 5463 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
31, 2syl 14 . . 3  |-  ( F : A -1-1-onto-> B  ->  `' F : B --> A )
4 feu 5400 . . 3  |-  ( ( `' F : B --> A  /\  C  e.  B )  ->  E! x  e.  A  <. C ,  x >.  e.  `' F )
53, 4sylan 283 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  <. C ,  x >.  e.  `' F )
6 f1ocnvfvb 5783 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  x  e.  A  /\  C  e.  B )  ->  ( ( F `  x )  =  C  <-> 
( `' F `  C )  =  x ) )
763com23 1209 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B  /\  x  e.  A )  ->  ( ( F `  x )  =  C  <-> 
( `' F `  C )  =  x ) )
8 dff1o4 5471 . . . . . . 7  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
98simprbi 275 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  `' F  Fn  B )
10 fnopfvb 5559 . . . . . . 7  |-  ( ( `' F  Fn  B  /\  C  e.  B
)  ->  ( ( `' F `  C )  =  x  <->  <. C ,  x >.  e.  `' F
) )
11103adant3 1017 . . . . . 6  |-  ( ( `' F  Fn  B  /\  C  e.  B  /\  x  e.  A
)  ->  ( ( `' F `  C )  =  x  <->  <. C ,  x >.  e.  `' F
) )
129, 11syl3an1 1271 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B  /\  x  e.  A )  ->  ( ( `' F `  C )  =  x  <->  <. C ,  x >.  e.  `' F ) )
137, 12bitrd 188 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B  /\  x  e.  A )  ->  ( ( F `  x )  =  C  <->  <. C ,  x >.  e.  `' F ) )
14133expa 1203 . . 3  |-  ( ( ( F : A -1-1-onto-> B  /\  C  e.  B
)  /\  x  e.  A )  ->  (
( F `  x
)  =  C  <->  <. C ,  x >.  e.  `' F
) )
1514reubidva 2660 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( E! x  e.  A  ( F `  x )  =  C  <-> 
E! x  e.  A  <. C ,  x >.  e.  `' F ) )
165, 15mpbird 167 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E!wreu 2457   <.cop 3597   `'ccnv 4627    Fn wfn 5213   -->wf 5214   -1-1-onto->wf1o 5217   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226
This theorem is referenced by:  1arith2  12368
  Copyright terms: Public domain W3C validator