ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofveu Unicode version

Theorem f1ofveu 5989
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
f1ofveu  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem f1ofveu
StepHypRef Expression
1 f1ocnv 5585 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
2 f1of 5572 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
31, 2syl 14 . . 3  |-  ( F : A -1-1-onto-> B  ->  `' F : B --> A )
4 feu 5508 . . 3  |-  ( ( `' F : B --> A  /\  C  e.  B )  ->  E! x  e.  A  <. C ,  x >.  e.  `' F )
53, 4sylan 283 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  <. C ,  x >.  e.  `' F )
6 f1ocnvfvb 5904 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  x  e.  A  /\  C  e.  B )  ->  ( ( F `  x )  =  C  <-> 
( `' F `  C )  =  x ) )
763com23 1233 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B  /\  x  e.  A )  ->  ( ( F `  x )  =  C  <-> 
( `' F `  C )  =  x ) )
8 dff1o4 5580 . . . . . . 7  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
98simprbi 275 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  `' F  Fn  B )
10 fnopfvb 5673 . . . . . . 7  |-  ( ( `' F  Fn  B  /\  C  e.  B
)  ->  ( ( `' F `  C )  =  x  <->  <. C ,  x >.  e.  `' F
) )
11103adant3 1041 . . . . . 6  |-  ( ( `' F  Fn  B  /\  C  e.  B  /\  x  e.  A
)  ->  ( ( `' F `  C )  =  x  <->  <. C ,  x >.  e.  `' F
) )
129, 11syl3an1 1304 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B  /\  x  e.  A )  ->  ( ( `' F `  C )  =  x  <->  <. C ,  x >.  e.  `' F ) )
137, 12bitrd 188 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B  /\  x  e.  A )  ->  ( ( F `  x )  =  C  <->  <. C ,  x >.  e.  `' F ) )
14133expa 1227 . . 3  |-  ( ( ( F : A -1-1-onto-> B  /\  C  e.  B
)  /\  x  e.  A )  ->  (
( F `  x
)  =  C  <->  <. C ,  x >.  e.  `' F
) )
1514reubidva 2715 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( E! x  e.  A  ( F `  x )  =  C  <-> 
E! x  e.  A  <. C ,  x >.  e.  `' F ) )
165, 15mpbird 167 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   E!wreu 2510   <.cop 3669   `'ccnv 4718    Fn wfn 5313   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  1arith2  12891  uspgredgiedg  15976
  Copyright terms: Public domain W3C validator