ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofveu Unicode version

Theorem f1ofveu 5841
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
f1ofveu  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem f1ofveu
StepHypRef Expression
1 f1ocnv 5455 . . . 4  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
2 f1of 5442 . . . 4  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
31, 2syl 14 . . 3  |-  ( F : A -1-1-onto-> B  ->  `' F : B --> A )
4 feu 5380 . . 3  |-  ( ( `' F : B --> A  /\  C  e.  B )  ->  E! x  e.  A  <. C ,  x >.  e.  `' F )
53, 4sylan 281 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  <. C ,  x >.  e.  `' F )
6 f1ocnvfvb 5759 . . . . . 6  |-  ( ( F : A -1-1-onto-> B  /\  x  e.  A  /\  C  e.  B )  ->  ( ( F `  x )  =  C  <-> 
( `' F `  C )  =  x ) )
763com23 1204 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B  /\  x  e.  A )  ->  ( ( F `  x )  =  C  <-> 
( `' F `  C )  =  x ) )
8 dff1o4 5450 . . . . . . 7  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
98simprbi 273 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  `' F  Fn  B )
10 fnopfvb 5538 . . . . . . 7  |-  ( ( `' F  Fn  B  /\  C  e.  B
)  ->  ( ( `' F `  C )  =  x  <->  <. C ,  x >.  e.  `' F
) )
11103adant3 1012 . . . . . 6  |-  ( ( `' F  Fn  B  /\  C  e.  B  /\  x  e.  A
)  ->  ( ( `' F `  C )  =  x  <->  <. C ,  x >.  e.  `' F
) )
129, 11syl3an1 1266 . . . . 5  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B  /\  x  e.  A )  ->  ( ( `' F `  C )  =  x  <->  <. C ,  x >.  e.  `' F ) )
137, 12bitrd 187 . . . 4  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B  /\  x  e.  A )  ->  ( ( F `  x )  =  C  <->  <. C ,  x >.  e.  `' F ) )
14133expa 1198 . . 3  |-  ( ( ( F : A -1-1-onto-> B  /\  C  e.  B
)  /\  x  e.  A )  ->  (
( F `  x
)  =  C  <->  <. C ,  x >.  e.  `' F
) )
1514reubidva 2652 . 2  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  ( E! x  e.  A  ( F `  x )  =  C  <-> 
E! x  e.  A  <. C ,  x >.  e.  `' F ) )
165, 15mpbird 166 1  |-  ( ( F : A -1-1-onto-> B  /\  C  e.  B )  ->  E! x  e.  A  ( F `  x )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   E!wreu 2450   <.cop 3586   `'ccnv 4610    Fn wfn 5193   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by:  1arith2  12320
  Copyright terms: Public domain W3C validator