| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reubidv | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
| Ref | Expression |
|---|---|
| reubidv.1 |
|
| Ref | Expression |
|---|---|
| reubidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reubidv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | reubidva 2715 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-eu 2080 df-reu 2515 |
| This theorem is referenced by: reueqd 2742 sbcreug 3109 xpf1o 7001 srpospr 7966 creur 9102 creui 9103 divalg2 12432 srgideu 13930 ringideu 13975 |
| Copyright terms: Public domain | W3C validator |