ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reubidv Unicode version

Theorem reubidv 2661
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
Hypothesis
Ref Expression
reubidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
reubidv  |-  ( ph  ->  ( E! x  e.  A  ps  <->  E! x  e.  A  ch )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem reubidv
StepHypRef Expression
1 reubidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21adantr 276 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
32reubidva 2660 1  |-  ( ph  ->  ( E! x  e.  A  ps  <->  E! x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2148   E!wreu 2457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-eu 2029  df-reu 2462
This theorem is referenced by:  reueqd  2683  sbcreug  3045  xpf1o  6847  srpospr  7785  creur  8919  creui  8920  divalg2  11934  srgideu  13161  ringideu  13206
  Copyright terms: Public domain W3C validator