ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reubidv Unicode version

Theorem reubidv 2649
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
Hypothesis
Ref Expression
reubidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
reubidv  |-  ( ph  ->  ( E! x  e.  A  ps  <->  E! x  e.  A  ch )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem reubidv
StepHypRef Expression
1 reubidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21adantr 274 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
32reubidva 2648 1  |-  ( ph  ->  ( E! x  e.  A  ps  <->  E! x  e.  A  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   E!wreu 2446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-eu 2017  df-reu 2451
This theorem is referenced by:  reueqd  2671  sbcreug  3031  xpf1o  6810  srpospr  7724  creur  8854  creui  8855  divalg2  11863
  Copyright terms: Public domain W3C validator