| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrnmpo | Unicode version | ||
| Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| rngop.1 |
|
| ralrnmpo.2 |
|
| Ref | Expression |
|---|---|
| rexrnmpo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 |
. . . . 5
| |
| 2 | 1 | rnmpo 6115 |
. . . 4
|
| 3 | 2 | rexeqi 2733 |
. . 3
|
| 4 | eqeq1 2236 |
. . . . 5
| |
| 5 | 4 | 2rexbidv 2555 |
. . . 4
|
| 6 | 5 | rexab 2965 |
. . 3
|
| 7 | rexcom4 2823 |
. . . 4
| |
| 8 | r19.41v 2687 |
. . . . 5
| |
| 9 | 8 | exbii 1651 |
. . . 4
|
| 10 | 7, 9 | bitr2i 185 |
. . 3
|
| 11 | 3, 6, 10 | 3bitri 206 |
. 2
|
| 12 | rexcom4 2823 |
. . . . . 6
| |
| 13 | r19.41v 2687 |
. . . . . . 7
| |
| 14 | 13 | exbii 1651 |
. . . . . 6
|
| 15 | 12, 14 | bitri 184 |
. . . . 5
|
| 16 | ralrnmpo.2 |
. . . . . . . 8
| |
| 17 | 16 | ceqsexgv 2932 |
. . . . . . 7
|
| 18 | 17 | ralimi 2593 |
. . . . . 6
|
| 19 | rexbi 2664 |
. . . . . 6
| |
| 20 | 18, 19 | syl 14 |
. . . . 5
|
| 21 | 15, 20 | bitr3id 194 |
. . . 4
|
| 22 | 21 | ralimi 2593 |
. . 3
|
| 23 | rexbi 2664 |
. . 3
| |
| 24 | 22, 23 | syl 14 |
. 2
|
| 25 | 11, 24 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-cnv 4727 df-dm 4729 df-rn 4730 df-oprab 6005 df-mpo 6006 |
| This theorem is referenced by: eltx 14933 txrest 14950 txlm 14953 |
| Copyright terms: Public domain | W3C validator |