| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexrnmpo | Unicode version | ||
| Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| rngop.1 | 
 | 
| ralrnmpo.2 | 
 | 
| Ref | Expression | 
|---|---|
| rexrnmpo | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rngop.1 | 
. . . . 5
 | |
| 2 | 1 | rnmpo 6033 | 
. . . 4
 | 
| 3 | 2 | rexeqi 2698 | 
. . 3
 | 
| 4 | eqeq1 2203 | 
. . . . 5
 | |
| 5 | 4 | 2rexbidv 2522 | 
. . . 4
 | 
| 6 | 5 | rexab 2926 | 
. . 3
 | 
| 7 | rexcom4 2786 | 
. . . 4
 | |
| 8 | r19.41v 2653 | 
. . . . 5
 | |
| 9 | 8 | exbii 1619 | 
. . . 4
 | 
| 10 | 7, 9 | bitr2i 185 | 
. . 3
 | 
| 11 | 3, 6, 10 | 3bitri 206 | 
. 2
 | 
| 12 | rexcom4 2786 | 
. . . . . 6
 | |
| 13 | r19.41v 2653 | 
. . . . . . 7
 | |
| 14 | 13 | exbii 1619 | 
. . . . . 6
 | 
| 15 | 12, 14 | bitri 184 | 
. . . . 5
 | 
| 16 | ralrnmpo.2 | 
. . . . . . . 8
 | |
| 17 | 16 | ceqsexgv 2893 | 
. . . . . . 7
 | 
| 18 | 17 | ralimi 2560 | 
. . . . . 6
 | 
| 19 | rexbi 2630 | 
. . . . . 6
 | |
| 20 | 18, 19 | syl 14 | 
. . . . 5
 | 
| 21 | 15, 20 | bitr3id 194 | 
. . . 4
 | 
| 22 | 21 | ralimi 2560 | 
. . 3
 | 
| 23 | rexbi 2630 | 
. . 3
 | |
| 24 | 22, 23 | syl 14 | 
. 2
 | 
| 25 | 11, 24 | bitrid 192 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 df-oprab 5926 df-mpo 5927 | 
| This theorem is referenced by: eltx 14495 txrest 14512 txlm 14515 | 
| Copyright terms: Public domain | W3C validator |