| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrnmpo | Unicode version | ||
| Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| rngop.1 |
|
| ralrnmpo.2 |
|
| Ref | Expression |
|---|---|
| rexrnmpo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 |
. . . . 5
| |
| 2 | 1 | rnmpo 6079 |
. . . 4
|
| 3 | 2 | rexeqi 2710 |
. . 3
|
| 4 | eqeq1 2214 |
. . . . 5
| |
| 5 | 4 | 2rexbidv 2533 |
. . . 4
|
| 6 | 5 | rexab 2942 |
. . 3
|
| 7 | rexcom4 2800 |
. . . 4
| |
| 8 | r19.41v 2664 |
. . . . 5
| |
| 9 | 8 | exbii 1629 |
. . . 4
|
| 10 | 7, 9 | bitr2i 185 |
. . 3
|
| 11 | 3, 6, 10 | 3bitri 206 |
. 2
|
| 12 | rexcom4 2800 |
. . . . . 6
| |
| 13 | r19.41v 2664 |
. . . . . . 7
| |
| 14 | 13 | exbii 1629 |
. . . . . 6
|
| 15 | 12, 14 | bitri 184 |
. . . . 5
|
| 16 | ralrnmpo.2 |
. . . . . . . 8
| |
| 17 | 16 | ceqsexgv 2909 |
. . . . . . 7
|
| 18 | 17 | ralimi 2571 |
. . . . . 6
|
| 19 | rexbi 2641 |
. . . . . 6
| |
| 20 | 18, 19 | syl 14 |
. . . . 5
|
| 21 | 15, 20 | bitr3id 194 |
. . . 4
|
| 22 | 21 | ralimi 2571 |
. . 3
|
| 23 | rexbi 2641 |
. . 3
| |
| 24 | 22, 23 | syl 14 |
. 2
|
| 25 | 11, 24 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-cnv 4701 df-dm 4703 df-rn 4704 df-oprab 5971 df-mpo 5972 |
| This theorem is referenced by: eltx 14846 txrest 14863 txlm 14866 |
| Copyright terms: Public domain | W3C validator |