| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrnmpo | Unicode version | ||
| Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| rngop.1 |
|
| ralrnmpo.2 |
|
| Ref | Expression |
|---|---|
| rexrnmpo |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 |
. . . . 5
| |
| 2 | 1 | rnmpo 6056 |
. . . 4
|
| 3 | 2 | rexeqi 2707 |
. . 3
|
| 4 | eqeq1 2212 |
. . . . 5
| |
| 5 | 4 | 2rexbidv 2531 |
. . . 4
|
| 6 | 5 | rexab 2935 |
. . 3
|
| 7 | rexcom4 2795 |
. . . 4
| |
| 8 | r19.41v 2662 |
. . . . 5
| |
| 9 | 8 | exbii 1628 |
. . . 4
|
| 10 | 7, 9 | bitr2i 185 |
. . 3
|
| 11 | 3, 6, 10 | 3bitri 206 |
. 2
|
| 12 | rexcom4 2795 |
. . . . . 6
| |
| 13 | r19.41v 2662 |
. . . . . . 7
| |
| 14 | 13 | exbii 1628 |
. . . . . 6
|
| 15 | 12, 14 | bitri 184 |
. . . . 5
|
| 16 | ralrnmpo.2 |
. . . . . . . 8
| |
| 17 | 16 | ceqsexgv 2902 |
. . . . . . 7
|
| 18 | 17 | ralimi 2569 |
. . . . . 6
|
| 19 | rexbi 2639 |
. . . . . 6
| |
| 20 | 18, 19 | syl 14 |
. . . . 5
|
| 21 | 15, 20 | bitr3id 194 |
. . . 4
|
| 22 | 21 | ralimi 2569 |
. . 3
|
| 23 | rexbi 2639 |
. . 3
| |
| 24 | 22, 23 | syl 14 |
. 2
|
| 25 | 11, 24 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-cnv 4683 df-dm 4685 df-rn 4686 df-oprab 5948 df-mpo 5949 |
| This theorem is referenced by: eltx 14731 txrest 14748 txlm 14751 |
| Copyright terms: Public domain | W3C validator |