ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrnmpo Unicode version

Theorem rexrnmpo 5894
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
ralrnmpo.2  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexrnmpo  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( E. z  e.  ran  F ph 
<->  E. x  e.  A  E. y  e.  B  ps ) )
Distinct variable groups:    y, z, A   
z, B    z, C    z, F    ps, z    x, y, z    ph, x, y
Allowed substitution hints:    ph( z)    ps( x, y)    A( x)    B( x, y)    C( x, y)    F( x, y)    V( x, y, z)

Proof of Theorem rexrnmpo
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21rnmpo 5889 . . . 4  |-  ran  F  =  { w  |  E. x  e.  A  E. y  e.  B  w  =  C }
32rexeqi 2634 . . 3  |-  ( E. z  e.  ran  F ph 
<->  E. z  e.  {
w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph )
4 eqeq1 2147 . . . . 5  |-  ( w  =  z  ->  (
w  =  C  <->  z  =  C ) )
542rexbidv 2463 . . . 4  |-  ( w  =  z  ->  ( E. x  e.  A  E. y  e.  B  w  =  C  <->  E. x  e.  A  E. y  e.  B  z  =  C ) )
65rexab 2850 . . 3  |-  ( E. z  e.  { w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph 
<->  E. z ( E. x  e.  A  E. y  e.  B  z  =  C  /\  ph )
)
7 rexcom4 2712 . . . 4  |-  ( E. x  e.  A  E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. z E. x  e.  A  ( E. y  e.  B  z  =  C  /\  ph ) )
8 r19.41v 2590 . . . . 5  |-  ( E. x  e.  A  ( E. y  e.  B  z  =  C  /\  ph )  <->  ( E. x  e.  A  E. y  e.  B  z  =  C  /\  ph ) )
98exbii 1585 . . . 4  |-  ( E. z E. x  e.  A  ( E. y  e.  B  z  =  C  /\  ph )  <->  E. z
( E. x  e.  A  E. y  e.  B  z  =  C  /\  ph ) )
107, 9bitr2i 184 . . 3  |-  ( E. z ( E. x  e.  A  E. y  e.  B  z  =  C  /\  ph )  <->  E. x  e.  A  E. z
( E. y  e.  B  z  =  C  /\  ph ) )
113, 6, 103bitri 205 . 2  |-  ( E. z  e.  ran  F ph 
<->  E. x  e.  A  E. z ( E. y  e.  B  z  =  C  /\  ph ) )
12 rexcom4 2712 . . . . . 6  |-  ( E. y  e.  B  E. z ( z  =  C  /\  ph )  <->  E. z E. y  e.  B  ( z  =  C  /\  ph )
)
13 r19.41v 2590 . . . . . . 7  |-  ( E. y  e.  B  ( z  =  C  /\  ph )  <->  ( E. y  e.  B  z  =  C  /\  ph ) )
1413exbii 1585 . . . . . 6  |-  ( E. z E. y  e.  B  ( z  =  C  /\  ph )  <->  E. z ( E. y  e.  B  z  =  C  /\  ph ) )
1512, 14bitri 183 . . . . 5  |-  ( E. y  e.  B  E. z ( z  =  C  /\  ph )  <->  E. z ( E. y  e.  B  z  =  C  /\  ph ) )
16 ralrnmpo.2 . . . . . . . 8  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
1716ceqsexgv 2818 . . . . . . 7  |-  ( C  e.  V  ->  ( E. z ( z  =  C  /\  ph )  <->  ps ) )
1817ralimi 2498 . . . . . 6  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  ( E. z ( z  =  C  /\  ph )  <->  ps ) )
19 rexbi 2568 . . . . . 6  |-  ( A. y  e.  B  ( E. z ( z  =  C  /\  ph )  <->  ps )  ->  ( E. y  e.  B  E. z ( z  =  C  /\  ph )  <->  E. y  e.  B  ps ) )
2018, 19syl 14 . . . . 5  |-  ( A. y  e.  B  C  e.  V  ->  ( E. y  e.  B  E. z ( z  =  C  /\  ph )  <->  E. y  e.  B  ps ) )
2115, 20bitr3id 193 . . . 4  |-  ( A. y  e.  B  C  e.  V  ->  ( E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. y  e.  B  ps )
)
2221ralimi 2498 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  ( E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. y  e.  B  ps )
)
23 rexbi 2568 . . 3  |-  ( A. x  e.  A  ( E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. y  e.  B  ps )  ->  ( E. x  e.  A  E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. x  e.  A  E. y  e.  B  ps ) )
2422, 23syl 14 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( E. x  e.  A  E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. x  e.  A  E. y  e.  B  ps )
)
2511, 24syl5bb 191 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( E. z  e.  ran  F ph 
<->  E. x  e.  A  E. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418   ran crn 4548    e. cmpo 5784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-cnv 4555  df-dm 4557  df-rn 4558  df-oprab 5786  df-mpo 5787
This theorem is referenced by:  eltx  12467  txrest  12484  txlm  12487
  Copyright terms: Public domain W3C validator