ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrnmpo Unicode version

Theorem rexrnmpo 5968
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
ralrnmpo.2  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexrnmpo  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( E. z  e.  ran  F ph 
<->  E. x  e.  A  E. y  e.  B  ps ) )
Distinct variable groups:    y, z, A   
z, B    z, C    z, F    ps, z    x, y, z    ph, x, y
Allowed substitution hints:    ph( z)    ps( x, y)    A( x)    B( x, y)    C( x, y)    F( x, y)    V( x, y, z)

Proof of Theorem rexrnmpo
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21rnmpo 5963 . . . 4  |-  ran  F  =  { w  |  E. x  e.  A  E. y  e.  B  w  =  C }
32rexeqi 2670 . . 3  |-  ( E. z  e.  ran  F ph 
<->  E. z  e.  {
w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph )
4 eqeq1 2177 . . . . 5  |-  ( w  =  z  ->  (
w  =  C  <->  z  =  C ) )
542rexbidv 2495 . . . 4  |-  ( w  =  z  ->  ( E. x  e.  A  E. y  e.  B  w  =  C  <->  E. x  e.  A  E. y  e.  B  z  =  C ) )
65rexab 2892 . . 3  |-  ( E. z  e.  { w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph 
<->  E. z ( E. x  e.  A  E. y  e.  B  z  =  C  /\  ph )
)
7 rexcom4 2753 . . . 4  |-  ( E. x  e.  A  E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. z E. x  e.  A  ( E. y  e.  B  z  =  C  /\  ph ) )
8 r19.41v 2626 . . . . 5  |-  ( E. x  e.  A  ( E. y  e.  B  z  =  C  /\  ph )  <->  ( E. x  e.  A  E. y  e.  B  z  =  C  /\  ph ) )
98exbii 1598 . . . 4  |-  ( E. z E. x  e.  A  ( E. y  e.  B  z  =  C  /\  ph )  <->  E. z
( E. x  e.  A  E. y  e.  B  z  =  C  /\  ph ) )
107, 9bitr2i 184 . . 3  |-  ( E. z ( E. x  e.  A  E. y  e.  B  z  =  C  /\  ph )  <->  E. x  e.  A  E. z
( E. y  e.  B  z  =  C  /\  ph ) )
113, 6, 103bitri 205 . 2  |-  ( E. z  e.  ran  F ph 
<->  E. x  e.  A  E. z ( E. y  e.  B  z  =  C  /\  ph ) )
12 rexcom4 2753 . . . . . 6  |-  ( E. y  e.  B  E. z ( z  =  C  /\  ph )  <->  E. z E. y  e.  B  ( z  =  C  /\  ph )
)
13 r19.41v 2626 . . . . . . 7  |-  ( E. y  e.  B  ( z  =  C  /\  ph )  <->  ( E. y  e.  B  z  =  C  /\  ph ) )
1413exbii 1598 . . . . . 6  |-  ( E. z E. y  e.  B  ( z  =  C  /\  ph )  <->  E. z ( E. y  e.  B  z  =  C  /\  ph ) )
1512, 14bitri 183 . . . . 5  |-  ( E. y  e.  B  E. z ( z  =  C  /\  ph )  <->  E. z ( E. y  e.  B  z  =  C  /\  ph ) )
16 ralrnmpo.2 . . . . . . . 8  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
1716ceqsexgv 2859 . . . . . . 7  |-  ( C  e.  V  ->  ( E. z ( z  =  C  /\  ph )  <->  ps ) )
1817ralimi 2533 . . . . . 6  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  ( E. z ( z  =  C  /\  ph )  <->  ps ) )
19 rexbi 2603 . . . . . 6  |-  ( A. y  e.  B  ( E. z ( z  =  C  /\  ph )  <->  ps )  ->  ( E. y  e.  B  E. z ( z  =  C  /\  ph )  <->  E. y  e.  B  ps ) )
2018, 19syl 14 . . . . 5  |-  ( A. y  e.  B  C  e.  V  ->  ( E. y  e.  B  E. z ( z  =  C  /\  ph )  <->  E. y  e.  B  ps ) )
2115, 20bitr3id 193 . . . 4  |-  ( A. y  e.  B  C  e.  V  ->  ( E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. y  e.  B  ps )
)
2221ralimi 2533 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  ( E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. y  e.  B  ps )
)
23 rexbi 2603 . . 3  |-  ( A. x  e.  A  ( E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. y  e.  B  ps )  ->  ( E. x  e.  A  E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. x  e.  A  E. y  e.  B  ps ) )
2422, 23syl 14 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( E. x  e.  A  E. z ( E. y  e.  B  z  =  C  /\  ph )  <->  E. x  e.  A  E. y  e.  B  ps )
)
2511, 24syl5bb 191 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( E. z  e.  ran  F ph 
<->  E. x  e.  A  E. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   ran crn 4612    e. cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622  df-oprab 5857  df-mpo 5858
This theorem is referenced by:  eltx  13053  txrest  13070  txlm  13073
  Copyright terms: Public domain W3C validator