ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbi Unicode version

Theorem ralbi 2602
Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.)
Assertion
Ref Expression
ralbi  |-  ( A. x  e.  A  ( ph 
<->  ps )  ->  ( A. x  e.  A  ph  <->  A. x  e.  A  ps ) )

Proof of Theorem ralbi
StepHypRef Expression
1 nfra1 2501 . 2  |-  F/ x A. x  e.  A  ( ph  <->  ps )
2 rsp 2517 . . 3  |-  ( A. x  e.  A  ( ph 
<->  ps )  ->  (
x  e.  A  -> 
( ph  <->  ps ) ) )
32imp 123 . 2  |-  ( ( A. x  e.  A  ( ph  <->  ps )  /\  x  e.  A )  ->  ( ph 
<->  ps ) )
41, 3ralbida 2464 1  |-  ( A. x  e.  A  ( ph 
<->  ps )  ->  ( A. x  e.  A  ph  <->  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2141   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453
This theorem is referenced by:  uniiunlem  3236  iineq2  3890  ralrnmpt  5638  f1mpt  5750  mpo2eqb  5962  ralrnmpo  5967  cau3lem  11078
  Copyright terms: Public domain W3C validator