| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbi | Unicode version | ||
| Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.) |
| Ref | Expression |
|---|---|
| ralbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 2539 |
. 2
| |
| 2 | rsp 2555 |
. . 3
| |
| 3 | 2 | imp 124 |
. 2
|
| 4 | 1, 3 | ralbida 2502 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 |
| This theorem is referenced by: uniiunlem 3290 iineq2 3958 ralrnmpt 5745 f1mpt 5863 mpo2eqb 6078 ralrnmpo 6083 cau3lem 11540 |
| Copyright terms: Public domain | W3C validator |