ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbi Unicode version

Theorem ralbi 2501
Description: Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.)
Assertion
Ref Expression
ralbi  |-  ( A. x  e.  A  ( ph 
<->  ps )  ->  ( A. x  e.  A  ph  <->  A. x  e.  A  ps ) )

Proof of Theorem ralbi
StepHypRef Expression
1 nfra1 2409 . 2  |-  F/ x A. x  e.  A  ( ph  <->  ps )
2 rsp 2423 . . 3  |-  ( A. x  e.  A  ( ph 
<->  ps )  ->  (
x  e.  A  -> 
( ph  <->  ps ) ) )
32imp 122 . 2  |-  ( ( A. x  e.  A  ( ph  <->  ps )  /\  x  e.  A )  ->  ( ph 
<->  ps ) )
41, 3ralbida 2374 1  |-  ( A. x  e.  A  ( ph 
<->  ps )  ->  ( A. x  e.  A  ph  <->  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    e. wcel 1438   A.wral 2359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-4 1445  ax-ial 1472
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-ral 2364
This theorem is referenced by:  uniiunlem  3109  iineq2  3747  ralrnmpt  5441  f1mpt  5550  mpt22eqb  5754  ralrnmpt2  5759  cau3lem  10543
  Copyright terms: Public domain W3C validator